Search or add a thesis

Advanced Search (Beta)
Home > Efficient Music Fingerprinting for Music Speech Segregation

Efficient Music Fingerprinting for Music Speech Segregation

Thesis Info

Access Option

External Link

Author

Qazi, Khurram Ashfaq

Program

PhD

Institute

University of Engineering and Technology

City

Taxila

Province

Punjab

Country

Pakistan

Thesis Completing Year

2018

Thesis Completion Status

Completed

Subject

Software Engineering

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/10077/1/Khurram%20Ashfaq%20Qazi_Software%20Engg_2018_PRR.pdf

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676727745461

Asian Research Index Whatsapp Chanel
Asian Research Index Whatsapp Chanel

Join our Whatsapp Channel to get regular updates.

Similar


Since decade, a lot of music fingerprinting and speech segregation algorithms have exhaled. Music speech segregation includes music identification and followed by speech segregation. This becomes challenging in the presences of the noisy environment and noisy sample case. A rapid development has taken place in the field of multimedia content analysis. Music information retrieval applications increased the emphases on the development of music fingerprinting algorithms. Noise affects the efficiency and accuracy of the audio information retrieval algorithms. This research thesis presents a deep analysis of music fingerprinting and speech segregation algorithms. A novel algorithm is presented for music fingerprinting which is used for efficient speech segregation in which music fingerprinting is performed over a noisy audio sample. This research work proposes a system that performs music fingerprinting in-depth evolving the speech segregation processes in presence of background noise. Noise is removed from the audio signal using layered separation model of the recurrent neural network. Music fingerprinting is performed on the basis of pitch based acoustic features classified using distributed dictionary based features learning model. The classified music is processed for speech segregation after noise removal using layered separation model. Speech is segregated using vocal based acoustic features. Features are classified using improved dictionary based fisher algorithm. Structured based classes are used for the classification process. The systematic evaluation of the proposed system for music fingerprinting and speech segregation produces competitive results for three datasets (i.e. TIMIT, MIR-1K, and MusicBrainz), and the results indicate the strength of the proposed system. The proposed system produces significantly better results when the qualitative and quantitative analysis is carried out over the standard datasets showing the better efficiency of our proposed system from the past systems.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

پروفیسر محمد رضوان علوی

پروفیسر محمد رضوان علوی
پروفیسر ڈاکٹر حافظ محمد رضوان علوی چند روز کی شدید علالت کے بعد ۲۰؍ جنوری کو لکھنو میں انتقال کرگئے، ان کا آبائی وطن کاکوری تھا جو ضلع لکھنو کا ایک مردم خیز قصبہ ہے۔ کاکوری کا علوی خاندان علمی، دینی اور ادبی حیثیت کے ساتھ ہی دنیاوی وجاہت میں بھی ممتاز تھا، یہاں بہت سے اہل علم و کمال پیدا ہوئے۔ اردو کے مشہور نعت گو شاعر محسن کاکوروی اور مولوی نورالحسن نیر صاحب نورالغات اسی آسمان کے مہروماہ تھے۔
پروفیسر محمد رضوان علوی کے والد ماجد مولانا مصطفےٰ حسن علوی فاضل دیوبند تھے۔ ان کا علمی و ادبی ذوق بھی پختہ تھا۔ وہ اردو کے مصنف و شاعر اور لکھنو یونیورسٹی کے شعبہ عربی کے صدر تھے، رضوان صاحب بھی تعلیم مکمل کرنے کے بعد پہلے یہیں شعبہ عربی میں لکچرر اور پھر مدت مدید تک صدر شعبہ رہے۔ ان کے زمانے میں شعبہ نے بڑی ترقی کی اور کئی نئے کورس کا اضافہ بھی ہوا۔
رضوان صاحب یونیورسٹی کے اچھے اور کامیاب استاد تھے، انہیں طلبہ کی صحیح رہنمائی کرنے، ان میں علمی مذاق پیدا کرنے اور ان کی صلاحیتوں کو نشوونما دینے سے بڑی دلچسپی تھی۔ شوقین اور ذہین طلبہ کی خاص طور پر ہمت افزائی کرتے، ان کی نگرانی میں درجنوں طلبہ نے پی۔ایچ۔ڈی کی ڈگری حاصل کی۔
ان کو درس و تدریس کے ساتھ تحریر و تصنیف کا بھی ملکہ تھا، اردو عربی اور انگریزی تینوں زبانوں پر قدرت تھی۔ ان کی کتابوں میں ’’علوم و فنون عہد عباسی میں‘‘ اور ’’دمشق اسلامی تہذیب کا گہوارہ‘‘ مقبول ہوئیں۔ ان کی علمی خدمات کی بنا پر صدر جمہوریہ ہند نے انہیں توصیفی سند بھی عطا کی تھی۔
لکھنو کی علمی، تعلیمی اور ادبی سرگرمیوں سے بھی سروکار رکھتے تھے۔ ان میں علمی و انتظامی دونوں طرح...

سورۃ نور کے تناظر میں مفتی محمد شفیع ؒ کےفقہی طرزاستدلال

Mufti Muhammad Shafi's tafseer is an important and educational extract in the Quranic field. Tafseer Muarif ul Quran has its own relevance and rank amongst others. This tafseer concentrates on current fiqhi issues and gives their solutions with strong signs It is also discussed social issues of the society. This article examines the fiqhi style and qualities of Mufti shafi "especially the study of Surah Noor" which are prominent factors of the Tafseer. This Tafseer has converted difficult terms and words into easy ways and elaborated Quranic verses with Hadith and old translations.

A Vision Based Plateform For Sign Language Interpretation

Human beings developed the ability to communicate with one another at the dawn of civilization and the primary method and approach of that communication methodology was through speech. Language development and the ability to communicate in a common language is the backbone of human living structure. Unfortunately not everyone in this world has the ability to use to speech or conventional hearing methods in order to communicate. They are known as hearing impaired people and they make use of sign language in order to communicate with each other and the rest. According to recent survey by Center of bibliographical study and research in California, 466 million people have hearing disability and 34 million of them are children. Hearing disability creates an issue for them from workplace to household and especially for children in emergency circumstances. The solution that currently exists in order to deal with this problem is human resource based where someone with hearing disability should be able to hire a sign language interpreter in order to communicate with those who do not understand sign language. The issue that comes along with this approach is that this is not very feasible or practical approach for may deaf and mute people and is unable to solve communication problems specially during emergency crisis period. The digital solutions that exist in dealing with this problem have two hindrances that comes along with them: the solution is either very expensive where it goes above $10,000 or the solution is not portable where it could not be carried to a classroom or a workplace. The solution that we have provided uses neural networks to translate sign language gestures into corresponding words, sentences, alphabets and numbers in English Language. The solution is affordable and portable as it comprises of a Raspberry pi, a camera, a potable battery and an LCD screen where the user just has to perform sign language gestures in front of the screen and corresponding results would appear written on the LCD. The way forward with this project is increasing the dataset and diversifying training images in order to increase and accuracy and completely omits the background or light visibility issue. Furthermore, the next approach for the this project could be releasing this project in the form of an application once proper accuracy levels are met in order to make this project completely free and perfectly portable