Search or add a thesis

Advanced Search (Beta)
Home > Family of Numerical Methods for the Solutions of Two Point Boundary-Value Problems Using Non-Polynomial Spline Functions

Family of Numerical Methods for the Solutions of Two Point Boundary-Value Problems Using Non-Polynomial Spline Functions

Thesis Info

Access Option

External Link

Author

Taseer, Shahrukh Kamal

Program

PhD

Institute

Ghulam Ishaq Khan Institute of Engineering Sciences and Technology

City

Topi

Province

KPK

Country

Pakistan

Thesis Completing Year

2011

Thesis Completion Status

Completed

Subject

Computer Science

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/2504/1/2572S.pdf

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676727757687

Similar


The research presented in this dissertation is aimed at the development of family of numerical solutions of Two Point Boundary-Value Problems (BVP) in all the branches of engineering sciences with higher precision. In such engineering related boundary-value problems the boundary conditions are specified at two points. The core of this dissertation is focused on the development of a new technique based on quartic non-polynomial spline functions, connecting spline functions values at "mid knots" for the numerical approximations to engineering BVPs and their corresponding values of the fourth-order derivatives. This new approach, which is recently being cited, is so developed that it leads to a family of numerical methods that may be used for computing approximations to the solution of a system of boundary-value problems of third and fourth-order associated with contact and sandwich beam problems. This research work is furthered on the development of a family of higher order numerical solutions to special non-linear third-order boundary-value problems. It is shown that the developed family of higher order methods gives better approximations in contrast to the existing numerical methods. It has further been shown that the existing second, fourth- order and higher order finite-difference and spline functions based methods become special cases of our new technique developed at mid knots presented in this dissertation. Results from the numerical experimentation of renowned problems are also given to illustrate applicability and efficiency of the newly developed family of numerical methods.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

داستان گوئی

داستان کی تعریف:
داستان کو اردو نثر کی اولین صنف قرار دیا گیا ہے۔داستان جھوٹی کہانی یا من گھڑت قصہ ہوتا ہے داستان وہ طویل کہانی ہے جو حقیقی زندگی کے بجائے مافوق الفطرت عناصر اور مخیرالعقول واقعات سے تعلق رکھتی ہے۔ ایسی کہانی جادوئی واقعات کا ایک طویل سلسلہ ہوتا ہے۔ دنیا کے تقریبا ہر ادب کے آغاز میں داستان موجود ہے اس کی وجہ انسان کے شعور کی اولین سطح ہے۔ علم و آگہی کے فروغ اور سائنس اور ٹیکنالوجی کے باعث انسان داستان کی سحرزدہ طبع سے باہر نکلا تو ادب میں داستان کی ناول ،ناولٹ ،افسانہ اور مختصر افسانہ وغیرہ جیسی اصناف متعارف ہوئیں۔داستان افسانوی ادب کی قدیم ترین صنف ہے۔ ان کے کردار عام طور پر مثالی ہوتے ہیں۔ زبان میں تکلف زیادہ ہوتا ہے۔اکثر داستانوں کا ماخذ عربی فارسی یا سنسکرت قصے ہوتے ہیں بعض طبع زاد ہوتے ہیں۔
اردو ادب میں داستان:
اردو کی قدیم داستانوں میں قصہ مہر افروز و دلبر، نو طرز مرصع، عجائب القصص، فسانہ عجائب، بوستان خیال، داستان امیر حمزہ، طلسم ہوش ربا کو بہت زیادہ مقبولیت حاصل ہے۔ اس کے بعد فورٹ ولیم کالج میں لکھی گئی داستانوں میں باغ و بہار، آرائشِ محفل، مذہبِ عشق وغیرہ بہت مشہور ہوئیں۔
اردو داستان کی تاریخ
دکن میں اردو داستان:
اردو میں تقریباً تمام اصناف کی ابتدا دکن میں ہوئی ہے۔ اردو کی پہلی داستان "سب رس" مانی جاتی ہے۔ اس کا مصنف ملا وجہی ہے۔ "سب رس" اردو کی مقبول ترین تمثیلی داستان ہے۔ اس میں حسن و عشق کی کشمکش اور عشق اور دل کے معرکے کو قصے کی صورت میں پیش کیا گیا ہے۔" طوطی نامہ" یا طوطا کہانی دکنی نثر کا دوسرا اہم کارنامہ ہے یہ ایک ترجمہ ہے۔ لیکن اس کا مترجم نامعلوم ہے۔ "انوار سہیلی" کو عالمی ادب میں ایک اہم...

Classification of News Articles using Supervised Machine Learning Approach

Today the big challenge for NEWS organization to well organize the news and well categorize the news in automatically no need the data entry people to enter and select the category and then based on the category and its sub-category they will be manually selected and enter the details and then after this the analysis will later on used for different aspects. The news is almost every second used in different sources of media in soft and hard. We use the both sources of the Pakistan News in dual languages English and Urdu both and process them and prepare them for machine learning and based on the Machine learning trained data we build a very effective and efficient model that can predict the title category of the news and category of description of the news. We use different machine learning algorithms and different features extraction finally we build the model using the machine learning algorithm with 89% accuracy with logistic regression.

Approximate Solutions of Higher Dimensional Flow Models of Non-Newtonian Fluids

This thesis deals with the application of a new hybrid scheme to find the approximate solutions of non-Newtonian fluids under different circumstances involving fractional derivatives. The hybrid technique we are employing has less computational effort and time cost as compared to other schemes presents in the literature. In starting, some preliminaries and basic concepts related to non-Newtonian fluids, constitutive equations, fractional calculus and hybrid scheme have been presented. Then in the next chapters the new hybrid scheme has been successfully applied to find the approximate solutions of second grade fluid with fractional derivatives, heat transfer in fractional Walters’-B fluid, Maxwell fluid with fractional derivatives, heat and mass transfer in fractional Jeffrey’s fluid and blood flow having magnetic particles with fractional derivatives. In Chapter 2, approximate solution of unsteady flow of second grade fluid with non-integer order derivatives through a circular cylinder has been procured. The flow of the fluid is produced due to stress applied on the surface of cylinder. The methodology adopted is the use of Laplace transform with numerical inverse Laplace algorithms to solve the governing equations. The inverse Laplace transformation has been procured through Talbot’s algorithm using Matlab software. The validation of numerical results of inverse Laplace transform is performed by employing two other numerical inverse Laplace algorithms namely as Stehfest’s and Tzou’s. The comparison between existing exact solution and our approximate solution is also presented in tabular form. Towards the end, the velocity field and shear stress graphs are depicted to understand the response of physical parameters. The aim of Chapter 3 is to study the heat transfer in Walters’-B fluid involving Caputo-Fabrizio fractional derivatives through an infinite oscillating vertical plate with Newtonian heating in the presence of magnetic field. The x governing equations of velocity and temperature fields are converted first in non-dimensional form by using dimensionless variables and then solved by employing Laplace transformation. The inverse Laplace transform has been simulated by using Stehfest’s inverse Laplace algorithm. The validation of numerical results is provided by employing Tzou’s algorithm. Mathcad software is used for all numerical calculations. The graphical illustrations represent the behavior of material parameters on the solutions. The variation in Nusselt number with the change in fractional and physical parameters is also presented. The goal of Chapter 4 is to examined the flow characteristics of a Maxwell fluid involving fractional derivatives in an infinitely long circular cylinder. A new hybrid scheme is applied to achieve semi-analytical solutions. The fluid is lying inside the cylinder. The approximate solutions for the velocity field and the time dependent shear stress have been established. The approximate solutions are procured by employing Laplace transform. The inverse Laplace transformation has been calculated with Talbot’s algorithm using Matlab software. At the end, velocity and time dependent shear stress graphs are plotted to see the behavior of physical parameters. In Chapter 5, the approximate solution of heat and mass transfer in magneto hydro dynamics (MHD) Jeffrey’s fluid is presented. The fluid is lying over a vertical plate with exponentially heating and constant mass dispersion. The Caputo-Fabrizio fractional operator has been utilized to build up the fractional model. Laplace transformation has been applied to find the approximate solutions of concentration, temperature and velocity fields. In this hybrid technique we have employed Laplace transform together with Stehfest’s inverse Laplace numerical algorithm. The physical effect of material parameters on velocity, concentration and temperature fields are delineated graphically. The impact of non-integer order parameter on solution is also displayed in tabular form. The reason for Chapter 6 is to study the magneto hydrodynamic flow of a viscous fluid having magnetic particles in a cylinder. The fluid is initially electrically charged in the presence of a uniform transverse external magnetic field. To obtain the flow model involving non-integer order derivatives, the fractional calculus approach is used. The solution of the flow model is obtained using Laplace transformation. Simon’s numerical algorithm is employed to obtain inverse Laplace transform. Similar solutions of flow model with ordinary derivatives and flow without magnetic particles has been procured as limiting case. At the end, the impact of non-integer order parameter, Reynolds number and Hartmann number on flow and magnetic particles velocity is analyzed and depicted by graphs.