۲۰۰۹ء میں جب میں نے سرگودھا یونیورسٹی میں ایم۔ فل اُردو میں داخلہ لیا تو اُسی وقت سے ہی سیالکوٹ کے شعر و ادب کی تاریخ لکھنے کا خیال میرے ذہن میں تھا اور یوں بھی زمانہ طالب علمی سے جب میں مرے کالج سیالکوٹ میں بی۔اے کا طالب علم تھا تو میری دلچسپی سیالکوٹ اور اس کے گردو نواح میں تخلیق پانے والے شعر و ادب اور اس علاقے کی تاریخی ،سیاسی ، سماجی و تہذیبی اور جغرافیائی اہمیت سے تھی۔ میں نے جس ماحول میں آنکھ کھولی وہ خطۂ سیالکوٹ کا روایتی ماحول تھا۔ یہ خیال آتا تھا کہ قدیم ترین خطۂ سیالکوٹ میں وقت کے ساتھ ساتھ جو تبدیلیاں رونما ہوئیں اور خاص طور پر جنھوں نے اس علاقے کے شعر و ادب کو متاثر کیا۔ اس کے بارے میں تحقیق ہونی چاہیے۔ اس سلسلے میں سب سے پہلے میں نے ۲۰۱۰ء میں سرگودھا یونیورسٹی میں ایم۔فل اُردو کے لیے تحقیقی مقالے ’’سیالکوٹ میں اُردو شاعری کا ارتقا ۱۹۴۷ء تا ۲۰۰۹ء ‘‘ کا انتخاب کیا۔ اس تحقیقی و تنقیدی مقالے میں شعرائے سیالکوٹ کے سوانحی حالات اور ان کی شاعری کا تحقیقی و تنقیدی جائزہ لیا گیا ہے۔ اس مقالے میں تشنگی رہہ گئی تھی کیوں کہ اس میں شاعری کی مکمل ادبی تاریخ کا بھی صحیح معنوں میں تحقیقی و تنقیدی جائزہ نہیں لیا گیا تھا۔ ضرورت اس امر کی تھی کہ سیالکوٹ کے شعری ادب کے ساتھ ساتھ نثری ادب کا بھی مکمل طورپر تحقیقی و تنقیدی جائزہ لیا جائے ۔اس عظیم کام کو سر انجام دینے کے لیے تحقیق کار نے ۲۰۱۲ء میں یونیورسٹی آف سرگودھا میں پی۔ایچ ڈی اردو میں داخلہ لیا۔ ۲۰۱۴ء میں یونیورسٹی نے ’’سیالکوٹ میں نقدو ادب کی روایت‘‘ عنوان کے تحت ریسرچ پروپوزل پی ایچ ڈی اُردو مقالے کے لیے منظور...
Abstract Pakistan has celebrated seven decades of independence but misfortunately the nation is still divided into several ideologies, believes, ethnicities, regionalism, provincialism, political and social classes. Throughout the world, education plays a significant role in nation building but the terrible upshot in Pakistan is the division of nation in the field of education and learning. There are numerous umbrellas under which our educational system is running. Therefore, current study objects to measure educational stratification and its effect on nation building process in Pakistan. In this regard, this research mainly focuses on four major prevailing educational systems such as; privately managed schools, public schools, army public schools and madarsa (religious educational institution). Data were collected through focus group discussions and analyzed by applying grounded approach theory. Four major themes emerged after data examination. These are uniformity of curricular, equal opportunities, political and bureaucratic involvement and lack of moral education. Study finds that education system is badly lacking in uniform ideology and moral learning. Furthermore, the poor system of education is negatively affecting nation building in Pakistan by enhancing public distrust, discrimination and regionalism. The results of the present study may be helpful in finding the way for uniform educational system which provide learning opportunities to every child without thinking of their caste, religion, language, economic class, political affiliation and ethnicity.
An algorithm using a suggested ansatz is presented to reduce the area of a surface spanned by a finite number of boundary curves by doing a variational improvement in the initial surface of which area is to be reduced. The anzatz we consider, consists of original surface plus a variational parameter multiplying the unit normal to the surface, numerator part of its mean curvature function and a function of its parameters chosen such that its variation at boundary points is zero. We minimize of its rms mean curvature and for the same boundary decrease the area of the surface we generate. We do a complete numerical implementation for the boundary of surfaces, a) when the minimal surface is known, namely a hemiellipsoid spanned by an elliptic curve (in this case the area is reduced for the elliptic boundary by as much as 23 percent of original surface), and b) a hump like surface spanned by four straight lines in the same plane- in this case the area is reduced by about 37.9141 percent of original surface along with the case when the corresponding minimal surface is unknown, namely a bilinearly interpolating surface spanned by four bounding straight lines lying in different planes. (The four boundary lines of the bilinear interpolation can model the initial and final configurations of re-arranging strings). This is a special case of Coons patch, a surface frequently encountered in surface modelling- Area reduced for the bilinear interpolation is 0.8 percent of original surface, with no further decrease possible at least for the ansatz we used, suggesting that it is already a near-minimal surface. As a Coons patch is defined only for a boundary composed of four analytical curves, we extend the range of applicability of a Coons patch by telling how to write it for a boundary composed of an arbitrary number of boundary curves. We partition the curves in a clear and natural way into four groups and then join all the curves in each group into one analytic curve by using representations of the unit step function including a fully analytic suggested by us. Having a well parameterized Coons patch spanning a boundary composed of an arbitrary number of curves, we do calculations on it that are motivated by variational calculus that give a better optimized and possibly more smooth surface. A complete numerical implementation for a boundary composed of five straight lines is provided (that can model a string breaking) and get about 0.82 percent decrease of the area in this case as well. Given the demonstrated ability of our optimization algorithm to reduce area by as much as 37.9141 percent for a spanning surface not close to being a minimal x xi surface, this much smaller fractional decrease suggests that the Coons patch for f ive line boundary we have been able to write is also close to being a minimal surface. That is it is a near-minimal surface. This work compares the reduction in area for near-minimal surfaces (bilinear interpolation spanned by four boundary lines and a Coons patch whose boundary is rewritten for a boundary composed of five lines) with the surfaces whose minimal surfaces are already known (a hemiellipsoid spanned by an elliptic disc and a hump like surface spanned by four straight lines lying in the same plane) and we have been able to calculate numerically worked out differential geometry related quantities like the metric, unit normal, root mean square of mean curvature and root mean square of Gaussian curvature for the surface obtained through calculus of variations with reduced area.