In scientific literature, a publication is deemed to be a way of expression regarding scientific contribution in a specific context of a discipline. It can be further substantiated through a well-known quote that “Communication in science is realized through research publications”. Over the decades, the tremendous increase has been witnessed in the production of documents available in the digital form. The increased production of documents has gained so much momentum that their rate of production jumps two-fold every five years. The large chunk of these documents comprises of research publications due to the subsequent discoveries and inventions in science. This incessant process of research publications has never been interrupted on the contrary, it has gained significant momentum. Almost 28,100 active scholarly journals are publishing almost 2.5 million articles per year. These articles are searched over the Internet via search engines, digital libraries, and citation indexes. However, retrieval of relevant research papers for user queries is still a pipedream. This is due to the fact that scientific documents are not indexed based on some subject classification hierarchies such as ACM classification system for Computer Science. This has motivated researchers to propose innovative approaches for research papers classification. This is not only beneficial for relevant retrieval of research papers but also is helpful in many other application scenarios such as when: (1) journal/conference editors want to identify reviewers; (2) research scholar wishes to identify the suitable supervisor; (3) authors intend to submit their research papers; and (4) one seeks to analyze trends, find experts and to recommend relevant papers etc. In this dissertation, author has critically reviewed the literature on research papers classification and identified the following research deficiencies which have been focused in this dissertation: (1) The existing research papers’ classification schemes utilize content of papers and most of the time, non-availability of content make those schemes non-applicable. There is a need to explore some alternative features to classify research articles that could produce results closer to content based approaches. (2) Majority of state-of-the-art approaches focus on single-label classification, while experiments on comprehensive dataset revealed that a research article may belong to multiple categories. There is a need of such multi-label classification system that utilizes best possible alternate of the content based approaches with closer or improved accuracy. (3) The existing multi-label classification schemes classify citations into limited number of categories, In Computer Science domain; ACM classificationsystem contains 11 classes at its root level. An approach that could classify research articles at least to the root level of ACM classification system is a need of the hour. The objective of this dissertation is to use freely available metadata in the best possible way to perform multi-label classification and to evaluate that; to what extent metadata based features can perform similar to content-based approaches? We have proposed, developed and evaluated techniques on metadata such as Title , Keywords, Title & Keywords, References of the research papers and have reported the achieved results. For classification of research articles based on metadata and into multi-labels, we have harnessed metadata in diverse ways for example: (1) Multi-label Document Classification using Papers’ Metadata (Title & Keywords); and (2) Multi-label Document Classification based on Research Articles’ References. These techniques have been evaluated for two different and diversified datasets. One dataset is from online journal known as Journal of Universal Computer Science (J.UCS) and other is benchmark dataset comprises of research papers published by the ACM. These techniques yield encouraging results (i.e. 88% of accuracy) by using only freely available metadata as compared to the state-of-the-art techniques on both datasets.
سی حرفی ۔۷ (نین نامہ، رسال پور۱۹۹۵) الف اکھیں دی یار بہار تازہ، اکھیں والیاں کرن وفا اکھیں اکھیں والیاں جگ جہان وِسدا، اکھیں دیندیاں آپ وکھا اکھیں اکھیں دل دیاں کھول،تیں نظر آوے، کرن آپ بصیرتاں وا اکھیں عرشوں پار حنیف پہنچ جاندیاں نیں، اللہ والڑے دین وکھا اکھیں
ب بات حقیقت دی دس دیواں، جلوے یار دے وچ جہان اکھیں قطرے ذرے دے وچ آفتاب چھپیا، کرن اپنی آپ پچھان اکھیں لاٹاں ماردا یار تیں نظر آوے، اِذن دید دے آپ فرمان اکھیں قدر اکھیں دے پُچھ حنیف تائیں، جنہوں کردیاں آپ مستان اکھیں
ت تیز نگاہواں دے کُٹھیاں نوں ہور لوڑ ناہیں ما سوا اکھیں دھیری اکھیں دے وچ دلدار بیٹھا، ڈیرے اکھیاں دے وچ پا اکھیں درشن باہجھ سواد کی زندگی دا، بوہے یار دے سٹیا چا اکھیں قدر پچھ حنیف توں اکھیاں دی، جیوندے وسدے نوں گئیاں کھا اکھیں
ث ثابتی، سکھ سواد سارے، اکھیں نال جہان سواد اکھیں رونق سب جہان تے اکھیاں دی، پیار نگر نوں کرن آباد اکھیں ویکھن قدرتاں روپ نظاریاں نوں، کرن رب دیاں نعمتاں یاد اکھیں پھیرا گھت حنیف پردیسیاں تے، کُوکاں مار کے کرن فریاد اکھیں
ج جان حاضر یار پیش تیرے، ہِک وار تاں دے دیدار اکھیں چشماں شوخ نگاہ نشیلیاں نیں، جاون لنگھ جگر توں پار اکھیں نین نرگسی مرگ ممولڑے دے، کیتا جیو جامہ بے قرار اکھیں اپنے آپ حنیف نہیں نیوں لائے، ہوئیاں دل تے آپ سوار اکھیں
ح حوصلہ ہمت ہار بھانویں، اکھیں تھکدیاں نہیں، انکار اکھیں اکھیں ویکھ کے ہٹ دیاں نہیں پِچھے، وجن کالجے وانگ تلوار اکھیں نگاہ تیز محبوباں دی جھال اوکھی، جھل سکدیاں نہیں خمار اکھیں اکھیں نال حنیف دے لا کے تے، کیتا جگ جہان نثار اکھیں
ملخـص:
اضطلعت قافلة منطقة وادي نون بدور مهم كوسيط وصـلة وصـل بـين اللـمال والجنـوب،
فوقوع هذا المجال الصحراوي وسـط المغـرب، جعلـن منفـذا يجاريـا لل اـاري اإلفريقيـة اآلييـة مـن
جنوب الصحراء، والمتجهة نحو شمال المغرب وأوروبا والعكس صحيح، إال أن ذلك ال يعني عـدم
يعرض القوافل التجارية لملاكل يحول دون نجاح مهمتها، التـي يتطلـا الـتمكن مـن منهجيـة عمـل
محكمة وما وطة، يحقق أرباح ونتارج إيجابية، سواء على المستوى االجتمـاعي أو االقتصـادي أو
الثقافي.
الكلمات المفتاحية: وادي نون، التجارة الصحراوية، القوافل التجارية.
Modeling of viscoelastic flows in terms of fractional calculus is an inquisitive area in engineering and industry. The physical models with fractional operators in nonNewtonian fluid mechanics represent more realistic behavior of flows involving nonlinear complex dynamics. The efficiency is because of freedom to choose derivative of any order in the mathematical formulation of the flows. Non-integer derivatives are important for the systems having hereditary behavior as they depend on the past conditions along with the local conditions. Viscoelastic fluids keep memory of old deformations and their behavior is related to these deformations. The fractional derivatives are more adequate in predicting the characteristics of viscoelastic fluids than the ordinary derivatives. In literature linear flow problems, with non-integer derivatives are solved by classical transforms methods. Unfortunately, most of the viscoelastic fluids unlike Newtonian fluids, are not characterized by only one relation. Mathematical equations, for the viscoelastic fluid flows are highly nonlinear in nature. In most of situations, highly nonlinear PDEs cannot be solved exactly, by existing techniques. Literature survey indicates, that appropriate consideration is not given to the numerical solutions, of anomalous nonlinear flow problems with noninteger derivatives. In this study, we have modeled the viscoelastic flow problems via fractional calculus approach and considered numerical techniques using finite difference approximations along with ”L1 algorithm”to discretize non-integer derivatives of time and finite element, discretization is used for space variables, in order to solve the governing fractional viscoelastic models. Finally we have predicted the behavior of viscoelastic fluids that can be used directly for the simulations of industrial processes.