Search or add a thesis

Advanced Search (Beta)
Home > Transform-Domain and Dsp Based Secure Speech Communication

Transform-Domain and Dsp Based Secure Speech Communication

Thesis Info

Access Option

External Link

Author

Jameel Ahmed

Program

PhD

Institute

Hamdard University

City

Karachi

Province

Sindh

Country

Pakistan

Thesis Completing Year

2007

Thesis Completion Status

Completed

Subject

Computer Science

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/3964/1/2652H.pdf

Added

2021-02-17 19:49:13

Modified

2023-01-07 12:53:39

ARI ID

1676727850891

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

جد دا یار سیانا ہویا

جد دا یار سیانا ہویا
ساتھوں دور ٹھکانا ہویا

کول وی آکے ملدا نہیں
مٹی کھیہ یارانہ ہویا

کرسی اوہ مخلوق دی خدمت
جِنّے رب نوں پانا ہویا

پہلے تاں ہک پل نہ وسدا
ہن کیوں یار بیگانہ ہویا

رکھ اڈیکاں میں جا ستا
خواباں وچ یرانہ ہویا

مستی وچ کئی سجدے کیتے
جد دا میں فرزانہ ہویا

شمع نے ہک دم ساڑ جلایا
عاشق جد پروانہ ہویا

جس درود و سلام نہ بھیجے
عاشق کیویں یگانہ ہویا

مستی اپنی اینویں لگے
یار دا مکھ مستانہ ہویا

ذکر فکر وچ تیرے رہنا
ایہو ای تانا بانا ہویا

Functional MRI Based Brain Mapping in Occipital Gyrus using Face Stimuli

Functional magnetic resonance imaging (fMRI) is one of the most powerful neuroimaging modalities due to its high spatio-temporal resolution characteristics. This known modality is applied on mapping the temporal, occipital, frontal cortices of the brain for localizing the neural activities generated due to any visual, physical or mental task or brain diseases or brain disorders. The occipital cortex is composed of middle, left, right, interior and exterior occipital gyrus and is responsible for visional function of human brain. The occipital gyrus reflects the neural image generated in the brain due to any visual activity. In this research paper, four different visual stimuli images of faces, scrambled, scenes and objects along with gap of blank space, forming a long sequence of stimuli observed by two female subjects, are experimented to examine and localize the most contrasting neural image generated in occipital gyrus of the brain. The visual fMRI brain data received from the two subjects is processed through fMRI-SPM12 toolbox based on Matlab software. In order to demonstrate the results statistically, two regressions such as T-contrast and F-contrast vectors are applied on fMRI images to highlight, and to localize the most active neural stimuli activities generated in the occipital gyrus of brain. In the results, it is demonstrated that maximum neural response can be mapped only for face stimulus in the bilateral occipital gyrus of the brain by applying T-contrast vectors regressions as when compared to other stimuli conditions and F-contrast vectors regressions. Further, it is also investigated that, the response of the face stimulus in F-contrast regressions achieved is somehow dispersed and unclear due to the large variances and interlinked communication of other stimuli or induced neural noises generated in entire volume of the brain.  Further from the given images, it is also investigated that the most reflecting and contrast area for any visual stimuli (such as face stimulus in this case) is either the middle or bilateral part of occipital gyrus of the human brain as identified through application of  T-contrast vectors regressions.

Anthraquinone Sulfonamides and Derived Heterocycles: Design, Synthesis, Biological Evaluation and Computational Studies

Leishmaniasis, a worldwide prevalent disease, is still enjoying the ruling with no proper medication; and to add to this current gloomy scenario the disease causing parasite Leishmania is becoming resistant to the ongoing medication that is being practiced now a days. Hence, the need is to search for reasonable, safe and targeted drugs; the present research is one such effort in this direction. To begin with, Leishmanolysin (GP63), zinc metalloprotease, expressed over the surface of Leishmania species was selected as drug target due to its virulence and reason for parasite resistance. A library of benzimidazole derivatives (1-37) was synthesized and screened for its antileishmanial potential against L. major. All the compounds were found potent antileishmanial with IC50 values in the range of 0.62-0.92 μg/mL as compared to amphotericin B (standard drug) IC50 value 0.56 μg/mL. 2-(Thiophen-2-yl)-1H- benzimidazole (19) and 2-(1H-indol-3-yl)-5-nitro-1H-benzimidazole (34) were identified as the lead compounds of the library with IC50 value of 0.62 μg/mL. ADMET properties of the entire library were also predicted by using ADMET PredictorTM and were observed to be safe. Molecular docking studies carried out on all the members of library and amphotericin B by using MOE software, indicated that the most active compounds fitted at the centre of binding pocket of GP63 built by amino acid residue His264, His268, His334 and Zn578. On the basis of molecular docking results, receptor based pharmacophore model was built containing three Aro|Hyd features and one Acc&ML feature. This pharmacophore model was used to design new scaffolds for antileishmanial compounds. Four libraries, 2-(2- aryl/heteroarylbenzimidazol-1-sulfonyl)anthraquinones (38-69), N-(heteroaryl)-anthraquinon-2- sulfonamides (70-95), aryl anthraquinon-2-sulfonates (96-111) and N-(anthraquinon-2-sulfonyl)-amino acid methylesters (112-123) were designed and all the cmpounds were found as hit by pharamocophoric search. Their antleishmanial activities were predicted by QSAR model; built by MOE software by selection of 94 descriptors and partial least square (PLS) method on experimental antileishmanial activity of 37-mebered library and amphotericin B, validated by internal and exernal test sets with correlation coefficient (R2) 0.7762. All the compounds belonging to four libraries (38-69, 70-95, 96-111 and 112- 123) were found potent antileihmanial with predicted activity in the range of 0.5435-0.9940. All the compouds were observed safe according to predicted ADMET properties and Lipinski’s rule of five (Ro5). Later, these four designed libraries were synthesized and characterized by physical constants and spectroscopic techniques for onward screening for their antileishmanial potential against L. major by using amphotericin B as standard control which confirmed that all the compounds were potent antileishmanial. Compliance of the predicted activity by QSAR model with observed activity from in vitro antileishmanial activity resulted in identification of the same lead compounds in each library 38-69, 70-95, 96-111 and 112-123 i.e. 2-(5-Nitro-4-methoxyphenyl-1H-benzimidazol-1-sulfonyl)anthraquinone (61) (predicted activity 0.6794, IC50 0.67 μg/mL), 2-(1H-benzo-1,2,3-triazol-1-sulfonyl)anthraquinone (91) (predicted activity 0.5579, IC50 0.57 μg/mL), 2-(1H-pyrazol-1-sulfonyl)anthraquinone (90) (predicted activity 0.5435, IC50 0.58 μg/mL), benzyl anthraquinon-2-sulfonate (100) (predicted activity 0.7615, IC50 0.76 μg/mL) and N-(anthraquinon-2-sulfonyl)-2-phenylglycine methylester (123) (predicted activity 0.7305, IC50 0.75 μg/mL). Pharmacophore based molecular docking studies carried out on all the eighty six compounds on GP63 by MOE software showed hydrophobic interactions, hydrogen bonding and metal ligation interactions with His268, His264, His334 and Zn578, respectively. This entire set of experiments in both dry and wet labs led to a successful designing of a variety of anthraquinon-2- sulfonamides as a novel scaffold having strong antileishmanial effect.