انداز مرا حسنِ بیاں تک نہیں پہنچا
جو رنگِ سخن خوب ہو واں تک نہیں پہنچا
پہنچے ہیں بہت لوگ ستاروں سے پرے بھی
کوئی بھی مرے دردِ نہاں تک نہیں پہنچا
مفلس یہ خبر سن کے ہی بس ڈوب گیا ہے
سیلاب ابھی اُس کے مکاں تک نہیں پہنچا
اعزاز ہے یہ حضرتِ شبیرؓ کو حاصل
سر ایسے کوئی نوکِ سناں تک نہیں پہنچا
جو زخم دیے تو نے مرے دل میں نہاں ہیں
یہ ذکر کبھی میری زباں تک نہیں پہنچا
فیضان ہے مجھ پر یہ مرے گنجِ شکرؒ کا
غم کوئی مرے دل، مری جاں تک نہیں پہنچا
محسوس میں کرتا ہوں محبت میں گرانی
یہ بار ابھی بارِ گراں تک نہیں پہنچا
سمجھا نہ کسی نے بھی مرے درد کو تائبؔ
کوئی بھی مری آہ و فغاں تک نہیں پہنچا
Permissibility (al-Ibāḥah) is a kind of the Islamic law, which gives option to someone to do or not to do something. If something is done by someone under this order, no punishment or reward is liable. It nullifies the delinquency. This paper defines the lexical and technical meanings of permissibility as defined by different Islamic scholars like alShāṭibī, al-Āmidī and al-Ghazālī and the conventional law that how it removes responsibility of delinquency of an act and makes it permissible for person, who does it. Its different kinds and causes for permissibility have been discussed. It has general and particular kinds. It has also been differentiated from insanity: that when a person commits an offense under defective understanding such as childhood, mental illness and in sleeping. These conditions remove someone’s responsibility and one cannot be prosecuted by both the laws. Different rules regarding mistake and ignorance in the case of al-Ibāḥah (permissibility) has been discussed in detail. There are limitations of al-Ibāḥah and if the limits of alIbāḥah are transgressed, then, the act converts into criminality. The author, in this paper, presents a comparative study of the Islamic Law and Conventional Law on the issue of al-Ibāḥah.
The essential norm of maximal and potential operators defined on homogeneous groups is estimated in terms of weights. The same problem is discussed for par- tial sums of Fourier series, Poisson integrals and Sobolev embeddings. In some cases we conclude that there is no a weight pair (v, w) for which the given operator is compact from L pw to L qv . It is proved that the measure of non-compactness of a bounded linear operator from a Banach space into a weighted Lebesgue space with variable parameter is equal to the distance between this operator and the class of finite rank operators. The p(x) essential norm of the Hilbert transform acting from L w p(x) to L v is estimated from below. As a corollary we have that there is no a weight pair (v, w) and a function p from the class of log-H ̈older continuity such that the Hilbert transform is compact p(x) from L w p(x) to L v . Necessary and sufficient conditions on a weight pair (v, w) governing the bound- edness of generalized fractional maximal functions and potentials on the half-space q(x) from L pw (R n ) to L v (R n+1 + ) are derived. As a corollary, we have criteria for the trace inequality for these operators in variable exponent Lebesgue spaces.