Search or add a thesis

Advanced Search (Beta)
Home > Evaluation of Solid Breast Masses Using Sonographic Acr Bi-Rads Lexicon Descriptors

Evaluation of Solid Breast Masses Using Sonographic Acr Bi-Rads Lexicon Descriptors

Thesis Info

Author

Bwombuna, Brian N.

Department

Imaging and Diagnostic Radiology (East Africa)

Program

MMed

Institute

Aga Khan University

Institute Type

Private

City

Karachi

Province

Sindh

Country

Pakistan

Thesis Completing Year

2010

Thesis Completion Status

Completed

Subject

Medicine

Language

English

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676728050264

Asian Research Index Whatsapp Chanel
Asian Research Index Whatsapp Chanel

Join our Whatsapp Channel to get regular updates.

Similar


Purpose of the study: To which of the ACR sonographic BIRADS lexicon descriptors can be used reliably to differentiate benign from malignant solid breast masses. Objectives: 1.Main Objective: To determine the association of sonographic ACR BI-RADS descriptors and solid breast masses 2. Specific Objective: To determine the predictive probabilities of sonographic BI-RADS lexicon descriptors Methodology: This was a 15 months prospective cross sectional study in which 125 consecutive patients who met the inclusion criteria were enrolled. The study was carried out at theAga KhanUniversity hospitalradiology department between October 2008 and December 2009 inclusive. The scans were performed in ourradiology department by residents and consultant radiologists. The sonographic BI-RADS descriptors were then assigned to the lesions based on the consensus arrived at between the principal investigator and the consultant radiologist. The findings were then correlated with the histological/cytological diagnosis which was the gold standard. The study was approved by the University Research and Ethics Committee Results: 66% (n=82) of the patients turned out to have benign lesions while 34% (n=43) had malignant breast lesions. All the sonographic BI-RADS descriptor variables demonstrated significant association with the histology results apart from vascularity. The predictive probability of malignancy was lowest (8.36 %) for lesions with parallel orientation and well circumscribed margins and highest (73.89%) for masses with non parallel and poorly circumscribed margins. Conclusion: There is a significant association between all the sonographic ACR BI-RADS lexicon descriptors and solid breast masses apart from one descriptor: vascularity. Lesions with both non parallel orientation and non circumscribed margins have the highest predictive probability for malignancy.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

باتوں سے بھی آگے تری سانسوں میں رہیں گے

باتوں سے بھی آگے تری سانسوں میں رہیں گے
دن جب بھی پھرے ہم تری راتوں میں رہیں گے

دوڑیں گے ترے جسم میں ہم بن کے محبت
ہم زندہ ترے عشق حوالوں میں رہیں گے

ہے قحط اگر وصل کا اس دشتِ جنوں میں
ہم ہجر زدہ آس کے ناتوں میں رہیں گے

اے ابرِ محبت! نہ ترا پہلو ملا تو
ہم صیدِ قفس ہجر کی گھاتوں میں رہیں گے

خوشبو ہے کہ سایہ ہے مرا، گل کہ فضاؔ ہے
اک خواب ہے، ہم ایسے ہی خوابوں میں رہیں گے

The Social and Financial Performance of Conventional and Islamic Microfinance Institutions in Pakistan

The financing operations of conventional microfinance institutions are usually based on interest (Usury/Riba) which is strictly prohibited by the Shariah of Islam, therefore, some Islamic microfinance institutions were set up in Pakistan to provide micro credit and other financial help to the deserving people based on Shariah compliant mechanism. The aim of this paper is to evaluate and compare the social and financial performance of these microfinance institutions in Pakistan. Two separate samples containing two microfinance institutions each, representing conventional and Islamic microfinance institutions has been selected for this study. Four stars, Wasil Foundation and Akhuwat from Islamic microfinance institutions while Asasah and Community Support Concern (CSC) from conventional microfinance institutions, rated by Mix market have been selected for this research paper. The social and financial performance based on outreach, profitability, efficiency/productivity, and portfolio quality of both these microfinance institutions were studied and compared. The study revealed that Islamic MFIs were more cost effective compared to conventional MFIs based on cost per borrower (CPB) and operating expenses to assets (OEA), while on the basis of financial efficiency conventional MFIs performed well. Though the financial and social performance of both Islamic and conventional MFIs have improved over the passage of time, still they have to struggle hard on various fronts especially to improve their profitability based on ROA and ROE measures to make the institutions profitable and sustainable. This study reveals that the successful operation of Akhuwat and Wasil Foundation for the last more than a decade latterly proves that Islamic MFIs are viable and sustainable even in the absence of charging interest from their clients. So, the society and the government should encourage and promote these Shariah compliant organizations in order to help the extremely marginalized people of the society.

Designing and Construction of Efficient Trickling Biofilter Systems for Wastewater Treatment

Attached growth processes for wastewater treatment have been significantly improved during recent years. Their application can be extended to sustainable municipal wastewater treatment in remote locations and in developing countries for the purpose of organic matter (BOD) removal and pathogenic decontamination. The formation of specific biofilm on support media is the essential part of attached growth processes, having peculiar mechanisms of pollutants removal. The present research work aimed to monitor the successive biofilm development and its physiological activities on polystyrene, tyre derived rubber, polypropylene and stone media, under aerobic and anaerobic conditions. These filter media were artificially colonized with biofilm by incubating it with activated sludge at 30°C±2 for nine weeks. Biofilm formation was monitored by gravimetric weight analysis, spectrophometric absorbance technique, heterotrophic plate count and scanning electron microscopy. The wet weight of polystyrene media biofilm was significantly increased from 1st till 9th week of incubation (0.56 to 1.59 g under aerobic condition). While, in case of other tested media weight of the biofilms increased till 7th week during succession and then started reduction. Relatively less growth was recorded under anaerobic condition as compared to aerobic conditions. Selected pathogenic indicators (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) monitored by HPC/mL considerably declined (90-99%) in the biofilms of all the media under both conditions, signifying microbial reallocation from pathogenic to beneficial microbial community. The MPN index of fecal coliforms and E. coli in the sludge also showed considerable reduction. Correspondingly the decreasing levels of COD and BOD5 (69.9─74.9%) showed signs of sludge digestion by biofilms on selected media types under both the environments. Further, changes in pH and nutrients (nitrites, nitrates, phosphates and sulphates) indicated the other key-organisms with efficient nutrient consuming capabilities in the biofilms. The surface analysis of media by SEM revealed emergence of profound bacterial growth on all media and emergence of cracks on tyre derived rubber media surface and slight deformation was further confirmed by FTIR. Further the microbial community composition in the biofilms of different packing materials was investigated using high-throughput pyrosequencing technology. Sequences of 16S rRNA gene fragments were recovered from biofilm samples of 12 laboratory scale reactors operated at different temperatures i.e., 10, 20 and 30°C for two weeks. Analysis of pyrosequencing and water physico-chemical data showed that substrate type (media vs. biofilm) and temperature conditions influence bacterial community structure and composition in experimental reactors. Greater bacterial diversity was observed in each sample (3142 operational taxonomic units), primarily due to the large number (22029) of sequences available for analysis and the identification of rare species.The number of classified sequences per sample ranged from 1016 to 2919.The results showed that there were 12 phyla and the relative abundance of phylum Proteobacteria was highest (54.06%) followed by Bacteroidetes (28.97%), Firmicutes (5.30%), Actinobacteria (3.88%) etc. in all the samples. The data set illustrated 23 genera of bacterial populations to be commonly shared by all samples, including, Rheinheimera, Rhodococcus, Aquabacterium, Trichococcus, Acidovorax, Flavobacterium, Roseateles, Aeromonas, Sediminibacterium, Hydrogenophaga, Aquimonas, etc., indicating core microbial community in the microbial populations of reactors. In the next step, study was carried out to assess selected packing media for locally designed and lab scale trickling biofilters systems and to develop a simplified model for describing the capacity of BOD removal in trickling biofilter systems. Trickling biofilters with four different media were investigated at two temperature ranges of 5-15°C and 25-35°C. The average removal of both COD and BOD5 was higher than 80% and 90% at temperature ranges of 5-15 and 25-35°C respectively. The geometric mean of fecal coliforms reduction was achieved up to4.0 log10 with polypropylene media at low temperature range of 5-15°C. While at higher temperatures range of 25-35°C reduction up to 3.97 log10 was observed with polystyrene media. A simplified model was developed and used to estimate the optimal BOD loading rates (Bvd) for designing robust trickling biofilter systems, with appropriate filter media which can be capable of treating organic loading rates of higher than 3kg BOD/m3.day. Finally, a simple, robust and a low-cost pilot scale stone media trickling biofilter system for municipal wastewater treatment was establishment at Quaid-i-Azam University, campus. The wastewater treatment efficiency of this locally designed prototype pilot scale stone media trickling biofilter was tested at 20-40.5°C for the removal of different pollution indicators (COD, BOD5, NH4-N, and pathogens). Simultaneously, the biofilms were sampled from the top and deeper layers of stone bed of the reactor for characterization. The Nitrosonoma sp. and Nitrobacter sp. were identified in the deeper layers while, 13 bacterial strains viz., Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa, Enterobacter aerogenes, Proteus vulgaris, Klebsiella pneumonia, Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Staphylococcus epidermitus, Streptococcus lactis and Corynebacterium xerosis were identified in the top layer of the stone media bed. The results signify the COD and BOD elimination efficiency from wastewater considerably increased with passage of time from Day 1 to day 40 of operation (62.4- 98.1%; COD and 56.4 - 98.6% BOD) at flow rate of 1.2 L/min and average BOD5 loading rate of 0.063 kg BOD/m3.day.The average NH4-N levels of the influent were low (0.0024 kg NH4-N/m3.day). However, the result indicated an excellent correlation of the average consumption of 7.55 mg/L of alkalinity per mg of NH4-N removal during 40 days of reactor operation. Moreover, a significant connection between nitrification efficiency and decrease in the average pH range (7.52 to 6.62) was observed, indicating the process of nitrification. The removal of pathogenic indicators from wastewater was evaluated and an average reduction of 88.8% in the MPN index of fecal coliforms in the effluent was recorded. Overall, a significant correlation of COD, BOD5, NH4 ̄N, and pathogenic indicators removal efficiency were noticed with increase in seasonal temperature from 20 to 40.5°C.The overall results proved that pilot scale trickling biofilter has a great potential to be transferred to field scale for treating sewage for small communities in developing countries even at low temperature conditions. It will not only help to improve the public health in terms of removal of wastes and pathogens from wastewater but also treated water could be used for agriculture purposes without any hesitation.