فانی دنیا
جدوں دا تو رب رب کہنا بھل گئی
دُکھاں دی اُجاڑ وچ کونج وانگوں رل گئی
ویلا ہتھوں جان لگا پیا نوں منا لَے
پیا دے دوارے بہہ کے درشن پا لَے
جس ٹور پیا ٹورے من اوہ رضا لَے
ایویں جانیں جیویں تقدیر تیری کھل گئی
اوکھی سوکھی جیویں توں ایہہ زندگی نبھائی اے
موت ویلے لوکاں تینوں کفنی پوائی اے
بھین بھائی سارے تیرے پان گے دہائی اے
جیس ویلے روح تیری وطناں نوں جُل گئی
مال تے اولاد والی یاد تینوں آوے گی
اوس ویلے جان تیری بڑا پچھتاوے گی
چنگی کیتی نیکی جہڑی اوہو کم آوے گی
دل والی میل توبہ نال دھل گئی
لبھیا کی تینوں اس دنیا مکار توں
چھڈ سوہنے رب نوں تے ہوئی بڑی خوار توں
کسے نہیں او پچھنا جو ہوویں گی بیمار توں
ایویں کوڑی دنیا دی چمک اُتے ڈُل گئی
قادری دیؔ ایہہ گل توں پلے بنھ لَے
دنیا ناں رج کے تے ہک واری کھن لَے
گور وچ آوے گا سکون گل من لَے
جدوں اوتھے جنتاں دی وا گھل گئی
The determinants of child marriage are triggered by complex social, economic, cultural, political and legal disparities. This research method used a cross sectional study. The research sample was 192 women who were married in 2018-2019 in the Campalagian District. This study aims to determine the effect of the age of marriage on the health of ibn and infants in the District of Campalagian. Chi-square test was used to analyze data. The results of the bivariate analysis showed that the age of marriage had an effect on the health of the newborn (p value = 0.003). However, the age of marriage on maternal health during pregnancy, maternal health at delivery, use of contraceptive methods, service standards for birth weight, and support from husbands do not have a significant effect. After conducting bivariate analysis using moderator variables, the results showed that. There is an effect of the age of marriage based on the age of the husband (p value = 0.017) and the husband's education (p value = 0.024) on maternal health at delivery. There is an effect of the age at marriage based on the husband's age (p value = 0.023), the wife's education (p = 0.008), and the husband's education (p = 0.009), on the health of the newborn. It can be concluded that the age of marriage has an effect on the health of the mother and baby and/or if it includes the age and education factors of both the respondent and the partner.
In the present thesis, we will present the analytical studies of some fluid flow models. We wish to analyze two main scenarios, one of which deals with non-fractional (or- dinary) models and the other with fractional models for the flow of non-Newtonian fluids. We use classical computational techniques capable of accurately operating in order to obtain exact analytical solutions. Our studies include Couette flows of a Maxwell fluid under slip conditions between the fluid and walls. The motion of the bottom plate is assumed to be a rectilinear translation in its plane while, the upper plate is at rest. Two particular cases, namely translation with constant velocity and sinusoidal oscillations of the bottom plate are considered. Next, unsteady motions of Oldroyd–B fluids over an infinite plate between two side walls will be investigated. The motion of the fluid is due to the bottom plate that applies two types of shears to fluid. Extending our studies, we look at the unsteady magnetohydrodynamic (MHD) flow of fractional Oldroyd–B fluid between two side walls perpendicular to a plate. Expressions of the obtained solutions are presented in a series form in terms of the generalized G functions. Finally, the unsteady flow of an Oldroyd–B fluid with frac- tional derivative model between two infinite coaxial circular cylinders is studied. The motion of the fluid is produced by the inner cylinder that, at time t = 0+ , applies a time dependent longitudinal shear stress to the fluid. Expressions of the obtained results are presented in a series form in terms of the generalized G and R functions. In all the flow models, we obtained the exact analytical solutions for motions with technical relevance, both for the velocity field and the shear stress(es). These solu- tions corresponding to some flows in which either velocity or the shear stress is given on the boundary are established for different kinds of non-Newtonian fluids as well as for fractional models. The exact analytical solutions that have been presented in all the fluid flow models satisfy all imposed initial and boundary conditions. Further on, the flow properties of models and the comparison to other models are highlighted with graphical illustrations.