دنیا بڑی مکار
ہر دم رہیں چوکنا یار
اکھاں کھول ٹریں دلدار
کسے وی تینوں معاف نہیں کرنا
پھر توں رونا دکھڑے جرنا
خالی بھانڈا عقل دا بھرنا
فیر سوچنا اے بیکار
اس دنیا نوں سمجھ توں بھائی
اندر وڑ کے کرن صفائی
رب رسول دی بات بھلائی
ایہہ دنیا ہے بڑی مکار
ایہہ دنیا سب دھوکے بازی
عشق مجازی تلکن بازی
نہ اوہ شہید تے نہ اوہ غازی
دنیا نال جو کردا پیار
ہر پاسے ہے افراتفری
پھردی اے ابلیس دی نفری
زندگی ہر دی اوکھی بسری
نہ ملیا چین قرار
گھر گھر ہوندی پئی بدخوئی
مہر محبت اُٹھ گیوئی
ہر دم دیندا یار دھروئی
توبہ اللہ استغفار
بھانویں گھر وچ ہون نہ دانے
کیبل چلدی ، وجدے گانے
ٹر گئے یار اوہ لوگ سیانے
آوے گھنگرو دی چھنکار
رناں روز بازار نوں جاون
اوتھے جا ایہہ خوشیاں پاون
کھڑ کھڑ ہسن ناں شرماون
ہوون ناں اوتھے بیزار
شادیاں دے کیہو جئے وطیرے
داج چ منگن موتی ہیرے
کھجل ہوون سب بے پیرے
پر نہیں کر دے گفتار
کڑیاں منڈے کالج پڑھدے
ہر کوئی تکے نکلدے وڑدے
چنگے لوکی ویکھ کے سڑدے
میری توبہ ہے لکھ وار
مطلب دی ہن رہ گئی یاری
مہر محبت اٹھ گئی ساری
ہر نے جانا وارو واری
قبر کریندی نت پکار
بھرے بازار مسیتاں خالی
اُجڑے باغ تے روون مالی
ہر جا ہوئی اے بدحالی
ہووے شالا فضل غفار
مسجد نوں آباد نہ کردے
ڈیریاں دے وچ حقے دھردے
رب رسول توں مول...
Najeeb Al-Kailani is a famous Egyptian Islamic writer. He was immensely impressed by Iqbal’s philosophy. He was absorbed in the study of Islamic literature in the early days of his life and dared to write many articles in various magazines, touching various aspects of Iqbal’s poetry. Al-Kailani then by maintaining his interest in Iqbal’s poetry, was compelled to write the book entitled إقبال الشاعر الثائر"”, (Iqbal, the Revolutionary poet). He was awarded with prize by ministry of education and training, and in 1977 President of Pakistan General Muhammad Ziaul haq awarded him gold medal. This article highlighted the impact of Allama Muhammad Iqbal in al-Kailani’ book and analyzed its text by refereeing it to the original poetry of Allama Muhammad Iqbal. This article concluded that Kailani’s book is finest and comprehensive book, which demonstrated the life and philosophy of Allama Muhammad Iqbal.
The real-time information for land use/land cover (LU/LC) data is very important for resource management, future prediction, and crops growth assessment. Although conventionally LU/LC data is collected through field survey but remote sensing data collection has its own importance due to time, accuracy and transparency factors. During the last decade, advancement in spaceborne multispectral data has proven to be beneficial over airborne data for land monitoring due to their increased spectral resolution. The objective of this research is to compare and analyze the five types (Fertile, Green pasture, Desert-rangeland, Bare and Sutlej-river land) of LU/LC multispectral data (five bands) acquired by multispectral radiometer (MSR5) and digital photographic data acquired from high resolution 10.1 megapixel Nikon camera. All experimentation has been performed using MaZda software version 4.6 with WEKA data mining tool version 3.6.12 on Intel® Core i3 processor 2.4 gigahertz (GHz) with the the 64-bit operating system. This research is conducted at The Islamia University of Bahawalpur province Punjab (Pakistan), located at 29°23′44″N and 71°41′1″E. For photographic data, image pre-processing techniques are applied, i.e., grayscale conversion, enhanced the contrast and sharpening procedure. Extract the 229 statistical texture features of the LU/LC data of each 512×512 image size. Three feature selection techniques fisher (F), the probability of error plus average correlation coefficient (POE+ACC) and mutual information (MI) are combined together (F+PA+M) and extract thirty most discriminant features out of 229 features space of each photographic image. For feature reduction, non-linear discriminant analysis (NDA) for photographic data (texture data) and linear discriminant analysis (LDA) for remote sensing data (multispectral data) have shown better clustering as compared to principal component analysis (PCA) and raw data analysis (RDA). Finally, we have employed different data mining classifiers namely, Artificial Neural Network (ANN), Random Forest (RF), Naive Bayes (NB) and J48 for classification. It is observed that artificial neural network (ANN: n class) is applied for training and testing by cross-validation (80-20) on these texture and multispectral data. It showed comparative better 91.332% accuracy for texture dataset and 96.40% for multispectral (MSR5) dataset respectively among all the employed classifiers.