Search or add a thesis

Advanced Search (Beta)
Home > Federal cabinet in Pakistan formation and working 1947-1977

Federal cabinet in Pakistan formation and working 1947-1977

Thesis Info

Author

Kiran, Naumana

Program

PhD

Institute

University of the Punjab

City

Lahore

Province

Punjab

Country

Pakistan

Subject

Political science

Language

English

Other

Call No :320.95491 N 29 F

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676728471705

Similar


Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
PhD
University of the Punjab, Lahore, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
PhD
University of Peshawar, Peshawar, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
BEC
COMSATS University Islamabad, Islamabad, Pakistan
PhD
Government College University, Lahore, Pakistan
PhD
Government College, Lahore, Pakistan
MA
University of Peshawar, Peshawar, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

مولانا عبدالماجد دریا بادی

آہ! مولانا عبدالماجد دریابادی
معارف کے زیر نظر شمارہ کی کتابت ہوچکی تھی کہ فخر روزگار، یگانہ وقت، مجاہد العلم، رئیس القلم اور دارالمصنفین کی مجلس ارکان کے صدر نشین مولانا عبدالماجد دریاباری کی رحلت کی اچانک خبر ریڈیو سے سنی تو ع عجب اک سانحہ ہوگیا ہے۔
ان کی زندگی کی شاندار کتاب ختم ہوگئی، جس کا ہر ورق اپنی گوناگوں خوبیوں سے مزین رہا، یہ عاجز راقم گزشتہ ۴۲ سال سے ایک ادنی خورد کی حیثیت سے ان کی بزرگانہ شفقت اور علمی جلالت کے سامنے سرتسلیم خم کرتا رہا، اس مدت میں ان کی زندگی کی جو سرگرمیاں رہیں وہ متحرک تصویروں کی طرح نظروں کے سامنے گھومنے لگیں۔
گل و آئینہ کیا ، خورشید و مہ کیا
جدھر دیکھا تدھر تیرا ہی رو تھا
کیننگ کالج لکھنؤ سے بی،اے کرنے کے بعد ان کی زندگی کا آغاز الحاد وبے دینی کی وادی کی سیر سے ہوا، مگر یہیں ان کی نظر شعلۂ طور بن کر چمکی، جس کے بعد وہ توحید اور رسالت کے ایسے داعی اور مبلغ بنے کہ سندیافتہ عالم نہ ہونے کے باوجود باوقار عالم تسلیم کیے گئے، اچھے اچھے علماء ان کے سامنے جھکے، کبھی علماء کی مجلس کے سرخیل بھی منتخب ہوئے اور ان کا خاتمہ بالخیر کلام پاک کے مفسر اور شارح کی حیثیت سے ہوا، انھوں نے اردو اور انگریزی میں جو تفسیر لکھی ہے اس میں اسرائیلیات کی فتنہ سامانیاں اور توریت و انجیل کی تحریفات کی شرانگیزیوں کی راز کشائی میں جو دیدہ وری اور نکتہ وری دکھائی ہے اس سے کلام پاک کے مفسروں میں ان کا مقام ہمیشہ نمایاں رہے گا، ان کی یہ تفسیر گنجینہ معارف و تحقیق بھی سمجھی جاتی رہے گی۔
وہ کچھ دنوں تک فلسفی بھی رہے، ان کی ’’فلسفہ جذبات‘‘ اور ’’فلسفہ اجتماع‘‘ ان کی ابتدائی...

معاشرتی بدامنی کے معاشی اسباب: تعلیمات نبوی کی روشنی میں

Economic causes of social insecurity describes the risk of economic loss faced by workers and households as they encounter the unpredictable events of social life. This review suggests a nine-part framework for studying the distribution and trends in these economic risks. Empirical research in these areas reveals high levels of economic insecurity among low-income households and suggests an increase in economic insecurity with the growth in economic inequality in the Country. The solution of social insecurity because of Economic causes is also discussed in the light of Teachings of Holy Prophet.

Shape from Geometric Regularities

3D shape reconstruction is a well-studied problem in Computer Vision literature and robust algorithms exist for 3D reconstruction using multiple photographs of rigid environments such as buildings and man-made objects. However, rigid 3D reconstruction using just one photograph is an ill-posed problem as we need to estimate 3D data from 2D observations. On the other hand, recovery of non-rigid 3D structure underlying human motion and clothing, from one or more videos is also a fundamentally challenging problem. In this thesis we propose novel geometric approaches for Single View Reconstruction using an abundance of orthogonal angles in urban environments, and non-rigid 3D reconstruction using limited spatiotemporal deformations due to natural motion constraints. Rigid man-made structures, such as buildings, are characterized by a profusion of mutually orthogonal line-pairs. Previous literature uses this regularity by grouping lines into orthogonal vanishing directions to rectify the projectively distorted images of planes. Unfortunately, this is a global constraint since all lines must follow a grid structure. Instead, we use locally adjacent orthogonal line-pairs for 2D Metric Rectification and demonstrate a robust solution wider applications. We pose the problem as explicit plane pose recovery which easily extends to Single View Reconstruction (SVR) of a multi-planar scene if plane boundaries are known. Moreover, we propose the first automated line based SVR algorithm with automatic segmentation for arbitrary plane and camera orientations. We only use the local angle regularity assumption combined with a 2.5D multi-planar layout. This is in contrast to the previous line-based algorithms that worked exclusively in either indoor or outdoor scenarios; restricted line, plane and camera orientations globally; and required ground plane or ceiling to be visible. We also extend the angle regularity idea into 3D where projectively distorted multi-planar structures, recovered using uncalibrated cameras, are rectified using locally adjacent orthogonal plane-pairs. Natural motion of humans, animals and clothing results in deformable shapes but these deformations are not arbitrary due to physical constraints. These regularities are typically posed as compactness of shape and trajectory bases so the deformable structure can be represented with far fewer parameters. This compact representation is useful when recovering non-rigid 3D structure using a single camera - otherwise an ill-posed problem since we need to recover 3D points from an equal number of 2D observations. Traditional algorithms require all feature points to be tracked at all times, stack them together in an observation matrix, and use matrix factorization to recover the 3D structure using rank constraints arising from shape or trajectory compactness. However, tracking all feature points at all times is not practical due to occlusions and deformations in the local patches being tracked. Therefore, we formulate these regularities as Local Rigidity constraints in space and time, resulting in a robust algorithm which reconstructs much shorter tracked sequences in the presence of missing data. In typical commercial applications known as Motion Capture, multiple static infrared cameras are required to track and reconstruct the deformable shapes. We extend the shape and trajectory compactness idea to multiple static cameras and propose an elegant factorization algorithm that works in the trajectory and shape subspaces directly. In contrast with previous single and multi-camera approaches, the proposed algorithm handles considerable amounts of noise and missing data, allowing for applications where specialized infrared cameras and markers are not available to aid in feature tracking. Ubiquitous nature of geometric regularities restricts the solution space for several geometric vision problems but investigating all possible applications of geometric regularities is intractable. Nonetheless, we present a wide range of novel algorithms for 2D, multi-planar 3D, and non-rigid 3D problems, using one or more cameras, while extending beyond the stability and applicability of previous solutions. We believe this provides sufficient evidence in favor of using geometric regularities for shape recovery.