ڈاکٹر سید عبدالعلی
افسوس ہے کہ آج قلم کو ایک ایسی برگزیدہ شخصیت کا ماتم کرنا پڑرہا ہے جو تنہا ایک شخص کا نہیں بلکہ علم و عمل کا ماتم ہے، دین و تقویٰ کا ماتم ہے، اخلاق و شرافت کا ماتم ہے، اس شخصیت کو دنیا ڈاکٹر سید عبدالعلی ناظمِ ندوۃ العلماء کے نام سے جانتی ہے، وہ تنہا ڈاکٹر یا ندوۃ العلماء کے ناظم نہ تھے، بلکہ اس زمانہ میں اپنے اوصاف، خصوصیات اور دینی و اخلاقی کمالات میں یگانہ تھے، ان کا نسبی تعلق مشہور عارف باﷲ حضرت سید شاہ علم اﷲ رحمتہ اﷲ علیہ رائے بریلوی کے خاندان سے تھا جس میں علم و عمل، دین و تقویٰ، فقر و تصوف اور ارشاد و ہدایت کی روایات صدیوں سے چلی آرہی تھیں، حضرت سید احمد شہید رحمتہ اﷲ علیہ اسی دووانِ عالی کے گوہر شب چراغ تھے۔
خاندان کی یہ ساری روایات ڈاکٹر صاحب مرحوم کے حصہ میں آئی تھیں، ان کے والد بزرگوار مولانا حکیم سید عبدالحئی صاحب رحمتہ اﷲ علیہ اپنے زمانہ کے مشہور عالم، نامور طبیب، اہل قلم فاضل اور صاحب زہد و تقویٰ بزرگ تھے، ڈاکٹر عبدالعلی صاحب ان کے خلف الصدق تھے، ان کی ذات قدیم و جدید تعلیم کا سنگم تھی، انہوں نے پہلے عربی اور طب کی تحصیل کی، اس کے بعد انگریزی پڑھی اور ڈاکٹری کی تعلیم حاصل کی، یہ وہ زمانہ تھا جب ڈاکٹروں کی زندگی مغرب زدگی اور انگریزی طرز معاشرت کا نمونہ ہوتی تھی، مگر ڈاکٹر عبدالعلی صاحب کی فطرت ایسی صالح و سلیم تھی اور ان کی رگوں میں ایسے بزرگوں کا خون تھا کہ جدید تعلیم کے مادی اثرات سے ان کا دامن بالکل پاک رہا، حتیٰ کہ ان کی ظاہری وضع قطع بھی خالص اسلامی رہی ناواقف لوگ ان کو دیکھ کر گمان نہیں کرسکتے تھے کہ ان کو...
This is an account of the life and works of Fazle Haq Khayrabadi, a great but forgotten Indian Muslim religious scholar and thinker of the 19th century is presented. Coming from a family of great distinction, Fazle Haq Khayrabadi was an author, poet and philosopher who expressed himself in Arabic, Persian and Urdu. Especially relevant is the dedication and fervor with which Khayrabadi participated in all stages of the First Indian War of Independence of 1857 [also termed the Great Mutiny], for which he was exiled to the Andaman Islands by the British rulers of India, where he died in 1862. The remarkable personality of Fazle Haq Khayrabadi [17871862] has been forgotten by an ungrateful nation that does not honour its heroes but instead buries them under the debris of history. A great scholar, familiar with the diverse disciplines in the Islamic sciences, and the Imam of the Khayrabadi school of logic and philosophy, he, also a son the great Fazle Imam Khayrabadi, distinguished himself early for his intellectual prowess and strength of genius. Amazingly, such a scholar, devoted to academics, was also a fighter and participant in the War of Independence of 1857, and a member of the revolutionary council that directed its strategy. For this, he suffered imprisonment at the hands of the vengeful British, who sentenced him to hard labour in the distant Andaman Islands – where he died ‘across the black water’.
The use of welding processes, especially for joining of aerospace alloys has gained a significant importance in the recent years. This is owing to the enhanced joint efficiency, increased sealing ability and reduced weight of the welded structures as compared to riveted structures. Moreover, the modern trend in aerospace industry has shifted towards the use of titanium alloys, due to their high strength to weight ratio and good corrosion resistance. This work is focused on the welding of the well-known α titanium alloy Ti-5Al-2.5Sn, which haslow cost alloying elements as compared to the mostly widely used Ti-6Al-4V alloy, has a good weldability and is also more suitable for high temperature aerospace applications. Tungsten inert gas (TIG), laser beam welding (LBW) and electron beam welding (EBW) are the mostly used welding methods for titanium alloys. As compared to TIG welding, LBW and EBW are always the preferred welding methods due to low heat input and deep penetration characteristics. However, TIG welding is mostly employed industrially due to significantly less capital cost and ease of automation due to reduced equipment size. A number of gaps were identified in the open literature related to the welding of Ti-5Al-2.5Sn alloy. Firstly, few studies are available in the public domain related specifically to the welding of Ti-5Al-2.5Sn alloy using TIG, LBW and EBW. Moreover, the reported work related to comparison of TIG, LBW and EBW of other titanium alloys is limited and there is a need of in-depth, comprehensive comparison of these welding processes in terms of microstructure, mechanical properties and residual stresses in the welded structures. The opportunities available for parametric analysis of LBW process in titanium alloys and optimization of the pulsed TIG welding process for titanium alloys especially Ti-5Al-2.5Sn alloy have not been explored to full potential. The present work aims mainly at improving the pulsed TIG (P-TIG) welding process for 1.6 mm thick Ti-5Al-2.5Sn alloy sheet so that resultant microstructure, mechanical properties and residual stresses are comparable to that of pulsed LBW (P-LBW) and EBW weldments. Microstructure, oxide contents and microhardness of fusion zone, HAZ width, weld zone strength, tensile residual stresses and plate deformations were measured to compare the performance of the weldments. P-LBW was found to be most suitable in terms of these performance attributes of TI-5Al-2.5Sn welds due to low heat input which led to a complete martensitic transformation in the FZ. The absence of shielding gas due to vacuum environment in EBW was beneficial in terms of increasing the joint quality (low oxide contents). However, an increased width of heat affected zone (HAZ) and partial α’ martensitic transformation in FZ of EBW was observed as compared to P-LBW. High heat input and much wide heat source in P-TIG led to coarse microstructure and partial martensitic transformation in FZ resulting in increase of FZ and HAZ width, plate deformations and tensile residual stresses and a reduction in FZ microhardness and weld zone strength. The optimization of P-TIG welding was performed using Box-Behnken design of experiments in which a mathematical was developed to establish the relation between the welding input factors (peak current, background current and welding speed) and output responses (FZ width, HAZ width, FZ grain size, ultimate tensile strength, notch tensile and impact strength, and elongation, longitudinal and transverse residual stresses). The dependence of output responses on the inputs of P-TIG welding and its physical significance in the context of microstructure was discussed in detail. Optimization was performed through different criteria and a multi-response optimization was suggested to maximize the joint strength, impact properties and minimize the residual stresses. Results were experimentally validated and the range of welding input parameters were recommended through overlay plots for industrial application.