ﷺ
میں صحنِ دل کے پت جھڑ کو ، بہارِ جاوداں کر لوں
محبت جانِ عالمؐ کی ، اگر روحِ رواں کر لوں
غم و آلامِ دنیا سے ، ذرا سا بھی جو گبھرائے
تو یادِ مونسِ جاںؐ سے ، میں دل کو شادماں کر لوں
سجائی بزمِ عالم ؛ جنؐ کی خاطر ؛ خالقِ کُل نے
اُنھیؐ کا ذکر کرنے کو ، میں بزمِ دوستاں کر لوں
سمائی نکہتِ بادِ بہاری میں مہک جنؐ کی
اُنھیںؐ سے خوشبوئیں لے کر میں دل کو گلستاں کر لوں
یہی سالک کو لے کر جا رہا ہے منزلِ حق پر
اسی نقشِ قدم کو چوم کر ، منزل نشاں کر لوں
اِدھر کر لوں زبانِ اشک سے عرضِ تمنا بھی
اُدھر چشمِ تصور میں سنہری جالیاں کر لوں
ادب گاہِ عقیدت میں کہاں الفاظ جچتے ہیں
’’طریقہ سب سے بہتر ہے کہ اشکوں کو زباں کر لوں‘‘
دلِ بے تاب کے لمحات اُنؐ کی یاد میں گزریں
جہانِ رنگ و بُو میں کیوں انھیں میں رائیگاں کر لوں
دلِ فرقت زدہ عرفانؔ! اُنؐ کے ذکر سے خوش ہو
میں صبح و شام اُنؐ کے نام کو وردِ زباں کر لوں
With the growing economic industry, the importance of bill discounting is not obscured any more. It is undoubtedly one of the most important tools of trade financing. Now it has become very easy for importers and exporters to sale any product to a complete stranger anywhere in the world and get the bill against it discounted before its maturity date. That is why this tool is in the practice of all conventional banks. But regarding to shār’iah rulings its prevailed practice in conventional banks is not shār’iah compliance as this transaction consists of debt sale and interest. But due to it’s vitally need, Jurists of Islamic shār’iah have stepped forward with its different alternatives based on Můrabaha, Wākalāh, Můshāārkāh and Bāy’ Sālām in currency. In this article we have covered the causes behind the shār’iah rulings of prevailed bill discounting in conventional banks and addressed the Bāy’ Sālām as an alternative in currencies and its executive model in Islamic banks. Furthermore I have discussed the different opinions of modern scholars regarding these issues.
Various problems of pure and applied sciences such as physics, chemistry, biology, engineering, economics, management sciences, industrial research and optimization can be studied in the unified frame work nonlinear equation f ( x) = 0. In this thesis, we use the variational iteration technique and its various modifications to suggest and analyze several iterative methods for finding the approximate solution of the nonlinear equations. Using suitable finite difference schemes, a number of new iterative methods free from second derivative are considered and analyzed. Variational iteration technique is also used to find the multiple roots of nonlinear equations with known and unknown multiplicity. Several examples are given to illustrate the efficiency and implementation of these new methods. Comparison with other methods is given to show the performance of new methods.