Search or add a thesis

Advanced Search (Beta)
Home > Contribution of Sindh to Hadith

Contribution of Sindh to Hadith

Thesis Info

Author

Hakim Muhammad Qasim Ain

Supervisor

A. F. M. Saghiruddin

Program

PhD

Institute

University of Sindh

Institute Type

Public

City

Jamshoro

Province

Sindh

Country

Pakistan

Thesis Completing Year

1983

Thesis Completion Status

Completed

Subject

Islamic Studies

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676729266531

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

جابر علی سید

جابر علی سید(۱۹۲۳ء۔۱۹۸۵ء) سیالکوٹ میں پیدا ہوئے۔ ۱۹۴۲ء میں ادیب فاضل کیا اور بنگلور چلے گئے۔ جہاں اپنے بھائی تراب علی کے ساتھ انگریزوں کو اردوپڑھاتے رہے۔ عالمی جنگ ختم ہونے کے بعد سیالکوٹ چلے آئے۔۱۹۴۷ء میں اورینٹل کالج سے فارسی میں ایم۔اے کیا۔ اس کالج میں آپ نے ڈاکٹر سید عبداﷲ اور صوفی تبسم جیسے اساتذہ سے کسبِ فیض کیا۔ ۱۹۵۳ء میں گورنمنٹ کالج جھنگ میں فارسی کے لیکچرار مقرر ہوئے۔(۸۲۵)

جابر علی سید ایک اچھے شاعر، ادیب، نقاد ،محقق ،ماہر لسانیات و عروض اور مشفق متواضع اُستاد تھے۔ جابر علی سید کی وفات کے بعد حمید اختر فائق نے ان کے شعری مجموعے کو ’’موجِ آہنگ ‘‘کے نام سے ۱۹۹۹ء میں مرتب کر کے شائع کیا۔

جابر علی سید کے دور کے شعرا صنفِ نظم میں شاعری کر رہے تھے۔ آزاد شاعری کے لیے نئے نئے تجربات کیے جارہے تھے۔ جابر نے بھی نظم میں خیالات و افکار کو ڈھالنا شروع کر دیا تھا۔ نظم کے ساتھ آپ نے غزل کو بھی اپنایا۔ آپ غزل کی فطری دلکشی ،اس کی اہمیت و افادیت سے پوری طرح واقف تھے۔اس لیے آپ نے غزل گوئی کو ذریعہ اظہار بنایا۔ ان کی پہلی غزل ادبی دنیا میں شائع ہوئی۔(۸۲۶)آپ نے اردو غزل میں ہیئت اور بحر کے نئے نئے تجربے کیے۔ اس لیے کہ آپ علم عروض سے دلچسپی رکھتے تھے۔ آپ نے اردو میں بعض بحروں کو روشناس کروایا۔ آپ نے اپنی غزلوں میں نئے الفاظ، نئے محاورے اور نئی ترکیبیں استعمال کیں۔ اُن کی غزلوں میں اُن کی شخصیت کی بہت سی داخلی کیفیات اور ان کے شعور و لا شعور میں اٹھنے والے ہنگاموں اور طوفانوں کا ذکرملتا ہے۔انھوں نے اپنی شاعری میں زبان کی صفائی ،شائستگی اور عمدگی پر پوری توجہ دی۔ جب وہ مروجہ لفظوں کے ساتھ ساتھ نئی تراکیب اور...

Frequency and Psychosocial Determinants of Gender Discrimination Regarding Food Distribution among Families

Due to male dominance in society as well as in households, the rights of females are ignored. Hence, there exists gender discrimination while giving food to family members which in turn results in poor health status for females. Therefore, it is important to explore the causes of this unequal distribution of food among family members Objective: To determine psychosocial factors causing gender discrimination regarding food distribution among families Methods: Data collected from fifty females aged 15-80 years, selected from the urban community using non-probability consecutive sampling, were used for analysis. Females with malnutrition, psychological disorders, with laparotomy and major surgery were excluded. Gender discrimination was assessed as males or male children were preferred for better and more food items like fresh food, meat, fruits, milk, dairy products and multivariate logistic regression analysis was done to see the impact selected factors on gender discrimination Results: The large family size (> 6 members) showed significantly higher odds of discrimination (OR=3.89; 95% CI= 1.03-15.26) than smaller families. The odds of food discrimination were 4 times more for the families, with males being earning hand (OR=4.57; 95% CI= 1.19-18.31). Similarly, there exist higher odds of gender discrimination in low-income families (OR=5.10; 95% CI= 1.18-23.87). While maternal education reduces the chances of food discrimination (OR=0.10; 95% CI= 0.02-0.42)  Conclusions: Psychosocial factors such as large family size, low monthly income, males being earning hand and maternal education were found to be associated with gender discrimination regarding food distribution among family members.

Quality of Service Based Cloud Computing Framework for Resource Management

Cloud Computing is an evolving information technology development, deployment and delivery model consisting of a collection of interconnected and virtualized computers enabling real time delivery of services and solutions over the Internet. One of the critical concerns in this environment is the provisioning of optimal software and hardware resources to ensure a better quality of service (QoS). The classic cloud computing model where services are provided by a single vendor introduces numerous challenges. Cloud services may be interrupted due to unavailability, natural disaster or abrupt increase of the load and hence the system may not be able to provide services to thousands of customers who solely rely and pay for resources. One of the recently emerging areas in cloud computing is deployment of virtual machines across multiple clouds based on providers’ ranking. This involves benchmarking of different cloud providers, development of different techniques for selection of candidate providers, frameworks for ranking cloud providers and monitoring service level agreement (SLA) violations. Most of the existing literature is focused on employing centralized approaches for overall system ranking and monitoring, however, these approaches are not efficient for an environment where job migration and auto-scaling of virtual machines take place across cloud boundaries. The main objective of this research work is the development and evaluation of a QoS based ranking framework for IaaS computing resources across multiple clouds for resource negotiation, provisioning of physical resources, monitoring and ranking, based on job execution experience. We propose a broker enabled QoS ranking, negotiation and monitoring framework based on user level QoS requirements that determine users’ needs and utility for choosing a best-fit cloud provider among a list of candidate cloud providers. Simulation and real test-bed experimentation results suggest that our proposed framework not only gained higher profit margin but also attained more user satisfaction in terms of lower job rejection and failure rate.