Search or add a thesis

Advanced Search (Beta)
Home > Adaptive Equalization of Wireless Channels

Adaptive Equalization of Wireless Channels

Thesis Info

Author

Lt Cdr M Afsar Khan PN

Program

MS

Institute

National University of Sciences & Technology

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2007

Subject

Science & Technology

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676729328948

Similar


Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
MS
National University of Sciences & Technology, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
BET
COMSATS University Islamabad, Islamabad, Pakistan
BET
COMSATS University Islamabad, Islamabad, Pakistan
BS
COMSATS University Islamabad, Islamabad, Pakistan
MBA
International Islamic University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
PhD
University of Engineering and Technology, Lahore, Pakistan
MS
International Islamic University, Islamabad, Pakistan
REE
COMSATS University Islamabad, Islamabad, Pakistan
University of Engineering and Technology, Lahore, Pakistan
BET
COMSATS University Islamabad, Islamabad, Pakistan
PhD
National University of Sciences & Technology, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
BS
COMSATS University Islamabad, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
PhD
International Islamic University, Islamabad, Pakistan
Mehran University of Engineering and Technology, Jamshoro, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

فینٹسی کولاژ

فینٹسی کولاژ

ضیغم رضا،پی ایچ ڈی اسکالر

جب مجھے اپنی اس صلاحیت کا ادراک ہوا کہ میں کسی بھی کتاب کے صفحے کو ایک نظردیکھ کر اس کے متن کو حفظ کرسکتا ہوں تو میں نے اپنا تمام تر وقت مطالعے میں صَرف کرنا شروع کردیا۔ جو صفحہ جہاں سے بھی ہاتھ لگا میں نے حفظ کرڈالا۔ اپنے جاننے والوں کی نجی لائبریریوں کو چند دنوں میں ختم کرکے میں نے شہر کا رُخ کیا۔ سرکاری و نجی لائبریریاں؛ جہاں تک بھی میری رسائی ہوئی؛ وہاں موجود کتابیں اب میرے حافظے میں بھی محفوظ ہوچکی تھیں۔ دنوں؛ ہفتوں اور مہینوں کی بے چینی کے بعد بالآخر وہ دن آگیا جب مجھ پہ انکشاف ہوا کہ اب پڑھنے کو کچھ نہیں بچا۔ میں نے تمام لائبریریوں میں موجود تمام تر کتابیں اپنے ذہن میں محفوظ کرلی تھیں۔

اُس رات میں اطمینان سے سویا کہ مزید پڑھنے کی تڑپ اب بالکل ختم ہوچکی تھی۔ رات کے کسی لمحے مَیں بیدار ہوا تو مجھے پانی کی پیاس محسوس ہوئی۔ ہونٹوں پہ زُبان پھیرتا میں اپنی چارپائی سے اُترنے ہی لگا تھا کہ مجھے یاد آیا؛ تاریخ میں ایک سے زائد اشخاص کو چارپائی سے اُترتے ہوئے سانپ نے ڈس لیا تھا۔ میں نے اپنے آپ کو وہیں روکا اور دائیں طرف سے اُترنے کی بجائے بائیں طرف سے زمین پہ پاؤں رکھنا چاہے۔ اس سےپہلے کہ  میرے پاؤں زمین پہ ٹِکتے مجھے یاد آیا کہ ایک شخص نے چارپائی کے بائیں طرف سے زمین پہ پیر اُتارے تھے مگر پاؤں ٹِکنے سے پہلے ہی وہ اوندھے منہ گرا اورموت کے منہ میں چلاگیا تھا۔۔ میں نے اپنے پاؤں سمیٹے اور اپنی چارپائی کا ہر حصہ آزمایا کہ شاید میں زمین پہ پاؤں رکھ سکوں مگر بے سود۔۔۔ میری یادداشت...

Civil-Military Relations and Concordance Theory: A Case Study of Pakistan (1988-93)

The article attempts to apply the concordance model of Rebecca Schiff’s on Pakistan from 1988-93. The findings of the article have observed some contradictions and problem of oversimplification in the model with reference to Pakistan. The finding did not support her argument that concordance amid the three stake holders on four indicators could prevent military intervention in politics. In fact the results of this study are different than the model’s beliefs.

Evaluation of Hidden Markov Model for Malware Behavioral Classification

Malware is a growing threat to computer systems and networks around the world. Ever since the malware construction kits and metamorphic virus generators became easily available, creating and spreading obfuscated malware has become a simple matter. The cyber-security vendors receive thousands of new malware samples everyday for analysis. It has become a challenging task for the malware analysts to identify if a given malware sample is a variant of a known malware or belongs to a new breed altogether. Since making an accurate decision about the nature of an unknown malware sample is crucial for updating of signature databases and propagation of the update to their customers, therefore vendors of cyber-security products need accurate malware classi cation techniques for this purpose. The research community has been active for providing a solution to the above problem, and a number of diverse avenues have been explored such as machine learning, graph theory,nite state machines, etc. Furthermore, many syntactic and semantic aspects of computer programs have been tried out in search of the best aspect that could be used to distinguish between harmful and harmless computer programs, and to di erentiate malware belonging to di erent families. All the proposed approaches have merits and demerits of their own, and the search for a solution that maximizes the classi cation accuracy with minimal computational costs is continued. This dissertation formulates malware classi cation as a sequence classi cation problem, and evaluates a widely used sequence classi cation tool, Hidden Markov Model (HMM), for the task of malware classi cation. HMM has been a method of choice for a broad range of sequential pattern matching applications such as speech analysis, behavior modeling and handwriting recognition to name a few. The dissertation rst proposes and evaluates novel methods of malware classi cation by combining HMM and malware behavioral features, which are attributes frequently used to distinguish between normal and malicious programs and to di erentiate x among malware families. As an another major contribution, the dissertationlls a signi cant research gap by studying the role of an important HMM parameter, the number of hidden states, in malware classi cation applications. Based on observations from comprehensive experiments conducted on a large and diverse dataset consisting of malware behavioral reports, the dissertation concludes that although HMM shows encouraging results when used for malware classi cation tasks, its potential from a practical standpoint is fairly limited. The dissertation makes the third contribution by proposing to replace the HMM component of malware classi cation method with Markov Chain Model (MCM), and performing comparative evaluation between the two models. Results of the comparison prove that classi cation performance achieved by HMM can be attained much more e - ciently by MCM, and therefore MCM should be preferred over HMM for malware classi cation applications.