Search or add a thesis

Advanced Search (Beta)
Home > پروفیسر عبدالحق کی اقبال شناسی کا توضیحی مطالعہ

پروفیسر عبدالحق کی اقبال شناسی کا توضیحی مطالعہ

Thesis Info

Author

محمد عامر اقبال صدیقی

Supervisor

شاہد اقبال کامران

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2018

Thesis Completion Status

Completed

Page

530ص

Language

Urdu

Keywords



Other

Classification: 928.91439 ع ا پ

Added

2022-07-09 15:09:56

Modified

2023-01-06 19:20:37

ARI ID

1676729744727

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ملازمت

ملازمت

                ناطق بچپن ہی سے بہت محنتی تھے اس لیے سکول سے واپس آنے کے بعد اپنے والد اور بھائیوں کے ساتھ کھیتوں میں کام کیا کرتے تھے۔ناطق نے’’اے ایس آئی‘‘ اور اس کے بعد ’’سیکنڈ لیفٹنٹ‘‘ کے لیے بھی ٹریننگ میں حصہ لیا مگر قسمت کو کچھ اور ہی منظور تھا دونوں جگہ ہی ٹریننگ کو ادھورا چھوڑ دیاکیوں کہ ان کی طبیعت مطمئن نہ ہوسکی۔ایک پرائیویٹ کمپنی میں بطور سپر وائزر کام کیا لیکن اسے بھی چار سال کے بعد چھوڑ دیا۔

                انہوں نے جب اپنے ابا جان سے باہر کے ممالک کی ثقافت کے بارے میں سنا توخود بھی وہاں چلے گئے۔وہاں محنت مزدوری کی ،پیٹ پالنے کی غرض سے چھوٹے سے چھوٹا کام کرنے میں بھی عار محسوس نہیں کی۔ انہوں نے وہاں لوگوں کے اونٹ بھی چرائے ،کھجور ڈھونے کاکام بھی کرتے رہے لیکن جیسا ان کی طبیعت میں ہی پایا جاتا ہے کہ کسی بھی کام میں مستقل مزاج نہ رہے وہاں سے بھی سب کچھ چھوڑ چھاڑ کر پاکستان واپس آن بسے اور یہاں آکے دوبارہ معماری کا کام شروع کردیا۔ ناطق نے ایک شاپ کے انچارج ہونے سے لے کر معلم کے تمام فرائض ادا کیے۔معماری کے کام کو خیر آباد کرنے کے بعد جو کام شروع کیا وہ ایک بک شاپ کے انچارج کا تھا۔

                انہوں نے 2006ء میں ’’اکادمی ادبیات اسلام آباد‘‘میں بطور انچارج خدمات سر انجام دیں۔2006 ء سے لے کر2009ء یعنی تین سال تک وہاں ادب کی خدمت کی۔ 2009ء میں اکادمی ادبیات اسلام آبادسے کام چھوڑ کر’’فیڈرل ڈائریکٹریٹ آف ایجوکیشن‘‘ میں نوکری کی۔ وہاں خوب محنت اور دل جمعی سے کام کیا مگر کچھ سال کی ملازمت کے بعد ہی اس نوکری کو بھی خیرآباد کہہ دیا اور’’مقتدرہ قومی...

The Concept of Medical Treatment and Guidelines for Physicians in Islamic Perspective

In fact, good health is the ultimate end of medicine for everyone through medical treatment. Islam does approve necessary measures to sustain good health. Thus its sustenance senses the subjects to avoid undue pains and sufferings. For this purpose medications and medical treatment is measured as a recognized tool in Islamic law. Therefore, this research paper reveals that numerous Muslim scientists worked on different branches of science,  and hence the Muslim physicians execute one of the most complicated “eye surgery” almost six hundred (600) years earlier than the European physicians. Indeed, it is the Muslim scientists who discovered the ‘force of gravity’, ‘blood circulation’, ‘laws of motion’. Factually, they developed the ‘theory of evolution’, ‘differential and integral mathematics’ and many more in the field of science. Consequently, the words of Campbell in this regard are very important to note that: “the European medical system is Arabian not only in origin but also in its structure”, which signify that “Muslim scientists are directly responsible for the European renaissance”. Resultantly, this paper argues that ‘medical treatment is an obligation if one’s life is in danger’ since preservation and protection of life is one of the primary objectives of Shariah. Although, in extraordinary circumstances, seeking medical treatment is highly encouraged in Islam, and an ill person is supposed to pursue medical treatment because Allah almighty has made both the illness and the cure.

Region Growing Approach for Segmentation of Brain Mri Images

This thesis aims to understand low level segmentation and quantification aspects of brain MR slices purely from imaging perspective. In this context we propose two fully automatic and novel preprocessing techniques for improvement in low level segmentation. At first place we propose a novel method for cerebrum localization which reduces extraneous information from brain MR slices significantly. Up to our best knowledge no one used this cerebrum extraction approach before. Secondly a novel polygonal seed selection procedure is suggested and preferred over histogram peaks method in the absence of prior to improve initial conditions for region growing. In addition to this we present a generalized conceptual framework for region growing segmentation designed through exhaustive region growing literature review. Extensive qualitative results have been shown over full brain MR volume for segmentation. The quantification aspect is also attempted to compare segmentation results with available ground truth. Ten T1-Weighted (voxel size: 1 mm3; dimensions: 181 x 217 x 181) Normal brain phantom datasets with varying noise and inhomogeneity along-with true anatomical model have been downloaded from McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University and are subject to low level segmentation using Otsu’s method, Seeded Region Growing Method (SRG), Watershed Transformation and K-Means Clustering. The preprocessing strategies with respect to brain MR images include intensity normalization, local histogram smoothing, non-local mean (NLM) filtering and cerebrum localization. To demonstrate cerebrum extraction over full brain MR volume the Otsu’s method along with hill down optimization is used which neatly separates the four tissue classes in brain MR slices, namely Background (BG), Cerebrospinal fluid (CSF), Gray Matter (GM) and White matter (WM). This initial Otsu’s segmentation along with novel polygonal seed selection scheme puts global information into service to improve initial conditions for seeded region growing (SRG). The polygonal seeds idea is also experimented with watershed segmentation and K-Means clustering of brain MR images showing clear improvement in initial conditions but more work needs to be done with geometrical foreground markers and seeds. Confusion matrix analysis shows that Otsu’s algorithm fails to segment CSF pixels especially when noise level is increased. In comparison to Otsu’s segmentation region growing always identify CSF pixels with an accuracy of around 30% to 50% over entire brain MR volume. Otsu’s method identifies GM and WM pixels most of the time with an accuracy of 88% to 99% percent while region growing capacity to classify these pixels ranges from 60% and 90% respectively. Normalized Root Mean Square Error (NRMSE) for CSF, GM and WM volume densities of ten subjects comes out 1.1%, 3.3% and 3.3% respectively from Otsu’s Segmentation while it is 3.8%, 6.2% and 5.1 % from region growing results for single subject. In terms of volume density these normal brain phantom data sets contain highest GM density, then WM density and least volume is occupied by CSF voxels.