Search or add a thesis

Advanced Search (Beta)
Home > A Comparative Study of Factors of Contributing in Dropout at M. Phil Level in Allama Iqbal Open University Islamabad: M. Phil Teacher Education

A Comparative Study of Factors of Contributing in Dropout at M. Phil Level in Allama Iqbal Open University Islamabad: M. Phil Teacher Education

Thesis Info

Author

Saba Arshad

Supervisor

Sidra Rizwan

Program

Mphil

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2020

Thesis Completion Status

Completed

Language

English

Other

Classification: 371.2913 SAC

Added

2022-07-09 15:11:20

Modified

2023-02-19 12:33:56

ARI ID

1676729787629

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

بڈھا مالی

بڈھا مالی

اک دفعہ دا ذکر اے کہ کسے پنڈ وچ بہت وڈا امباں دا باغ سی۔ ایہہ باغ اک خدا ترس بندے دی ملکیت سی۔ ایہہ بندہ بہت زیادہ سخی سی۔ اوہ باغ توں ہوون والی آمدنی دا اک وڈا حصہ غریب لوکاں اتے خرچ کردا سی۔ اوس باغ دی راکھی لئی اک بڈھا بابا رکھیا ہویا سی۔ بابا بہت محنتی تے ایماندار سی۔ اوس دی محنت پاروں ہر سال بہت زیادہ فصل ہوندی۔ جس پاروں باغ دا مالک بہت خوش ہوندا تے اپنی آمدن وچوں بہت سارے پیسے بابے نوں وی دے دیندا۔ مالک ایس بابے اتے بہت اعتبار کردا سی۔ بابے دے ہتھ وچ بہت برکت تے مٹھاس سی۔ بابے دے ہتھاں دے لگے بوٹے کدے سکدے نئیں سن۔ ایس لئی کہ بابا اوہناں نوں اپنے بالاں طرح پالدا سی۔ لوک ایس باغ دی فصل دا بے چینی نال انتظار کردے تے جدوں امب پک کے بازار وچ جاندے تاں ہتھو ہتھ وِک جاندے ایہہ ویکھ کے بابا تے مالک بہت خوش ہوندے۔

ایس باغ وچ اک نم دے درخت اتے وڈی مکھی دا چھتہ لگیا ہویا سی۔ شہد دا ایہہ چھتہ لگ بھگ 4 فٹ تائیں پھیلیاں ہویا سی۔ بابا ایس چھتے کولوں بہت دور سی۔ اوس کدے ایس ول دھیان نہ دتا۔ صرف اپنے کم نال کم رکھیا۔

ایس باغ دے نال ای امباں دا دوجا باغ وی سی۔ اوس دا مالک اکھڑ مزاج، کنجوس تے لڑاکا سی۔ اوس دا مالک نوکراں نال اکثر لڑدا رہندا، اوہناں دی بے عزتی کردا جس پاروں نوکر دل لاہ کے کم نہ کردے۔ نتیجہ ایہہ نکلدا کہ امباں دی فصل بہتی نہ ہوندی تے نہ ای ایس باغ دے امب مٹھے ہوندے۔ مالک نوں ایس گل دا بہت ساڑا سی۔ اوہ چاہندا سی کہ کسے طریقے...

Islamic Economic Concept in Poverty Alleviation

This study aims to describe the concept of Islamic economics in poverty alleviation. This research method is descriptive qualitative research using data sources from literature or library research (library research). The research approach uses a normative approach and a historical approach. The normative approach is used to examine the ideals of the Islamic Economic conception and then analyze how it is applied. Meanwhile, the historical approach is used to study empirical facts about poverty alleviation. The results showed that the stagnant distribution will cause inequality and social inequality. For this reason, the implementation of the zakat obligation is a very urgent need. The priority of poverty alleviation according to the concept of Islamic economics is to overcome the causes of poverty, namely improving the distribution of wealth. Zakat is the main instrument which is a solution to these various problems, especially in dealing with poverty and social inequality. In Islam, the state must create programs and facilities that can overcome the problem of poverty, guarantee a decent life for the poor and provide the economic means needed to become a source of livelihood for the poor. Islamic economics can be explored more deeply for the development of economics and its benefits in alleviating poverty.

Extreme Value Frequency Analysis by Tl-Moments and Transmuted Distributions

The purpose of extreme value frequency analysis is to analyze past records of extremes to estimate future occurrence probabilities, nature, intensity and frequency. It is only possible if most suitable probability distribution is employed with proper estimation method. Many probability distributions and parameter estimation methods have been proposed in last couple of decade, but the quest of best fit has always been of concern. In the continuity of this dimension, the fundamental aim of this dissertation is to model the extreme events by proper probability distributions using the most suitable method of estimation. This objective is achieved by reviewing and employing the concept of L- and TL-moments and quadratic rank transmutation map. The L- and TL-moments of some specific distributions are derived, and parameter estimation is approached through the method of L- and TL-moments. In this study three transmuted and two double-bounded transmuted distributions are developed and proposed with their properties and applications. Moreover, the generalized relationships are also established to obtain the properties of the transmuted distributions using their parent distribution. In the first part of the dissertation, it is observed that the Singh Maddala, Dagum, and generalized Power function distribution are suitable candidates for extreme value frequency analysis, as these densities are heavy-tailed in their range. In literature, the theory of L- and TL-moments is considered best and extensively used for such analysis. Therefore, the L- and TL-moments are derived, and the parameters of these densities are estimated by employing the method of L- and TL-moments. These estimation methods are compared with the method of maximum likelihood estimation and method of moments using some real extreme events data sets. Simulation studies have also been carried out for the same purpose. In these studies, superiority of the method of L- and TL-moments has been justified. In the second part of the dissertation, three heavy-tailed, flexible and versatile distributions are introduced using the quadratic rank transmutation map to model the extreme value data. The proposed distributions are the transmuted Singh Maddala, transmuted Dagum and transmuted New distribution. The mathematical properties viiiand reliability behaviors are derived for each of the proposed transmuted distribution. The densities of order statistics, generalized TL-moments, and its special cases are also studied. Parameters are estimated using the method of maximum likelihood estimation. The appropriateness of the transmuted distributions for modeling extreme value data is illustrated using some real data sets. The empirical results indicated that the proposed transmuted distributions perform better as compared to the parent distributions. In literature, continuous double-bounded data is fairly popular. However, it is quite unrealistic to analyze such kind of data using normal theory models. This type of data is also targeted, and two new double-bounded distributions have been introduced, in the third part of the dissertation. These developed distributions termed as transmuted Kumaraswamy and transmuted Power function distribution. The most common mathematical properties are derived, and it has been observed that the hazard rate function have either increasing or bathtub shaped for these distributions. The method of maximum likelihood estimation is employed for the parameter estimation and the construction of the confidence intervals. The application and potential of these distributions are investigated using real data sets. Comparatively, proposed double bounded transmuted distributions performed better than their parent distributions in real applications. Finally, it has already been proved that transmuted distributions are better than their parent distributions. But directly dealing with the transmuted density is complicated and exhaustive especially for order statistics analysis. To make it simple, the relationships between transmuted and parent distributions are established for the single and product moments of order statistics. In addition, the generalized TL- moments of the transmuted distribution and its special cases are derived using single moments of the parent distribution. The established relationships are used for parameter estimation, and a simulation study is also carried out to investigate the behavior of the estimators. Moreover, the transmuted and parent distributions relationships are illustrated through two well-known distributions and two real data sets. Furthermore, it can be claimed on the base of established results; now it is quite convenient to find the moments of order statistics, parameter estimates and especially generalized TL-moments for transmuted distributions.