Search or add a thesis

Advanced Search (Beta)
Home > سرائیکی میں سفر نامہ: تحقیقی و تنقیدی جائزہ

سرائیکی میں سفر نامہ: تحقیقی و تنقیدی جائزہ

Thesis Info

Author

امجد رضا

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2020

Thesis Completion Status

Completed

Page

ص275

Language

Urdu

Other

Classification: 915.5 ا م س

Added

2022-07-09 15:11:20

Modified

2023-01-06 19:20:37

ARI ID

1676729812414

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

اساتذہ

اساتذہ

 مفتی اعظم ہند، مفتی عزیز الرحمن عثمانی،غلام بشیر احمد عثمانی اور مولانا اعزاز علیؒ شامل ہیں اور دورہ حدیث میں آپکے اساتذہ انور شاہ کشمیری غلام رسول ہزاروی تھے اور مولانا اشرف علی تھانویؒ سے بھی حدیث کی تعلیم حاصل کی۔

فتوی کی ذمہ داریاں

افتاء کا منصب علمی سلسلوں میں سب سے مشکل سمجھا جاتا ہے فقہ کے لاکھوں ملتے جلتے مسائل کا تھوڑے تھوڑے فرق سے حکم بدل جاتا ہے۔ بہت سے احکام اور حالات کے تغیر سے بھی بدلتے ہیں دار العلوم دیو بند میں تدریس کا جب آغاز کیا تو اس وقت دارالعلوم کے صدر مفتی حضرت مولانا عزیز الرحمن عثمانی ؒ تھے ۱۳۴۴ھ میں مفتی اعظم ہند جب دارالعلوم سے مستعفی ہوگئے تو مفتی شفیع ؒکو منصب افتاء کی پیش کش ہوئی جو انہوں نے مولانا اشرف علی تھانویؒ کے مشورے سے قبول کرلی۔اور ۱۳۵۰ھ کو دارالعلوم دیو بند کی مجلس شوریٰ نے آپ کو منصب افتاء پر بحیثیت صدر مفتی فائز کردیا۔

فتوی سے تدریس کی طرف منتقلی

 بزرگوں کے حکم پر فتوی کی ذمہ داری کو قبول تو فرمالیا مگر بعد میں تدریس میں واپس چلے جانے کی اجازت چاہی لیکن اجازت نہ ملی آپ کے دوبارہ اصرار پر ۱۳۵۴ھ میں دارالعلوم کی مجلس شوری نے یہ مشکل فیصلہ بھی کردیا کہ فتویٰ سے تدریس کی طرف منتقل کردیا جائے۔

سیاسیات میں فکری و عملی حصہ

طبعاً ہنگاموں اور جلوسوں سے الگ رہنا پسند کرتے تھے لیکن جب بھی دین اسلام اور مسلمانوں کی کسی اہم دینی ضرورت نے سیاست میں حصہ لینے کا تقاضا کیا تو آپ اس میں شریک ہوئے۔

 پہلی جنگ عظیم کے اواخر میں جب مجاہدین بلقاں ہر طرف سے کفر...

Jugni, Dhola and Mahiya: Comparing

Among the amazing variety of forms of poetic expression by the folk of the Punjab region, this essay has selected three genres: mahiya, dhola and jugni. The study is meant to compare these three genres of Punjabi folklore, in their evolution, structure, expression and themes. The study finds that the three genres are very old in time origin and tracing their exact origins in history is impossible, only few hints are available. Their structures are variable, as mahiya has a fixed structure, dhola has rather loose structure giving more freedom to the singer-poet, and jugni has a specific meter in certain lines, but it has freedom to repeat some lines for perfect expression of the melody. The structures in fact follow the tunes, distinct for each genre. Three genres have many themes common, but jugni has spirituality as dominant theme, dhola has expression of love as dominant them and mahiya has now become quite inclusive, but it originated as expression of love and it still retains that character in its core. The folk heart of Punjab has endeared these three genres so much that these are appreciated far and wide in original tunes, but new experiments of tunes and themes are also underway. Being a true mirror of simple unsophisticated villagers these folk songs would lose popularity if these villagers become sophisticated hence the need for their preservation is highlighted in this study.

Numerical Simulations of Fractional Order Nonlinear Dynamical Systems

Mathematical models play a role in analyzing and control infectious diseases in a population. These models construction clarifies assumptions, variables and parameters, and provide conceptual insights such as thresholds and basic reproduction numbers for various infectious diseases. Some very important theories are built and tested, some quantitative speculations are made and some specific questions are answered with the help of mathematical models. This leads to a better strategy for overcoming the transmission of diseases.For the last twenty years, chaos theory has brought about a valuable association between mathematicians and researchers in bio-medical sciences. Such association has described a biomedical system with ordinary and fractional order mathematical model usually consists of a nonlinear ordinary or fractional order differential equation or system of non-linear ordinary or fractional order differential equations. The fractional order mathematical model is used to predict the behavior of corresponding bio-medical system. The model must be investigated to guarantee that it does not foresee chaos in the bio-medical system under examination, when chaos is not actually present in the system. The mathematician must further confirm that any method used to solve the fractional order mathematical model does not envisage chaos when chaos is not a feature of the bio-medical system. The contrived chaos can be avoided and stability can be retained using implicit methods instead of using explicit numerical methods. In recent years, fractional differential equations have become one of the most important topics in mathematics and have received much consideration and growing curiosity due to the options of unfolding nonlinear systems and due to their prospective applications in physics, control theory, and engineering. The generalization is obtained by changing the ordinary derivative with the fractional order derivative. The benefit of fractional differential equation systems is that they allow greater degrees of freedom and incorporate the memory effect in the model. Due to this fact, they were introduced in epidemiological modeling systems. The main reason for using integer order models was the absence of solution methods for fractional differential equations. Various applications, like in the reaction kinetics of proteins, the anomalous electron transport in amorphous materials, the dielectrical or mechanical relation of polymers, the modeling of glass forming liquids and others, are successfully performed in numerous research works.The physical and geometrical meaning of the non-integer integral containing the real and complex conjugate power-law exponent has been proposed. Since integer order differential equations cannot precisely describe the experimental and field measurement data, as an alternative approach, non-integer order differential equation models are now being widely applied. The advantage of fractional-order differential equation systems over ordinary differential equation systems is that they allow greater degrees of freedom and incorporate memory effect in the model. In other words, they provide an excellent tool for the description of memory and hereditary properties which were not taken into account in the classical integer order model.In the present research work, we developed and investigated fractional order numerical techniques for the solution of fractional order models for infectious diseases, whose fixed points will be seen to be the same as the critical points of model equations and to have the same stability properties. These techniques will numerically analyze the behavior of solution of the fractional order models, stability analysis of the steady states and threshold criteria for the epidemics. The proposed techniques may be used with arbitrarily fractional order, thus making them more economical to use when integrating for arbitrary fractional order and may preserve all the essential properties like dynamical consistency, positivity and boundedness, of the corresponding fractional order dynamical systems.