منشی عتیق احمد
فروری ہی میں دارالمصنفین کے پریس کے منصرم منشی عتیق احمد صاحب نے لکھنؤ میں داعی اجل کو لبیک کہا، ان کے والد بزرگوار منشی صدیق احمد صاحب بھی جو مولانا مسعود علی ندوی مرحوم کے حقیقی بھانجے تھے، پریس کے انچارج رہ کر عرصہ تک دارالمصنفین کی خدمت کرتے رہے، منشی عتیق کو دمہ کا موذی مرض تھا جو بالآخر جان لیوا ثابت ہوا، دارالمصنفین میں وہ مولانا مسعود علی ندوی کے خاندان کی آخری یادگار تھے، اﷲ تعالیٰ مغفرت فرمائے اور پسماندگان کو صبر جمیل عطا کرے، آمین۔ (ضیاء الدین اصلاحی، مارچ ۱۹۹۸ء)
Islam is not a mere set of worships but it leaves no stone unturned to guide its followers regarding the social conduct be it politico-legal, sociocultural or economic etc to name a few. The interest-based transactions have been categorically rendered impermissible and unlawful by virtue of Quranic injunctions and authentic ahadith. In this article the issue of interest based transactions – Muslim to Muslim, Muslim to non-Muslim and vice versa, a Muslim resident of a non-Muslim state and a Muslim non-resident of a nonMuslim state – has been discussed in detail in the light of Quran, hadith and juristic rulings of the eminent Islamic scholars including the great four imams.
Condition based maintenance of machinery is being much talked about in the engineering sector of defense and commercial industry. A lot of expenditure is generally incurred on condition monitoring of machinery to avoid unexpected downtimes and failures vis-à-vis optimizing machinery operation. The concept is ever evolving due to technological advancements as well as with the emergence of unique nature of defects in complex systems. The features of machinery health extracted through modern condition monitoring technologies helps in diagnostics of current health; however, utilizing the current data for prediction of future machinery state i.e Prognostics is a challenging task. Prognostic is one of the key elements of modern maintenance philosophies. Effective prognostic, from the machinery data, leads towards operational reliability, reduced machinery downtime, cost savings, secondary/catastrophic failures etc. Machinery health prognosis follows a sequential methodology inclusive of various processes ranging from data acquisition till remaining useful life estimation. Every step depicts distinct statistical features, which are helpful in estimating present and future health state of a machine. Various methodologies have been adopted by the researchers in an effort to precisely forecast/predict machinery health. Research in this area, where stochastic models have been applied, revealed encouraging results. In this thesis, we have presented three nonlinear stochastic models with their application on bearing health prognosis. These include Markov Switching Auto Regressive Model with Time Varying Regime Probabilities, Threshold Auto Regressive Model and Structural Break Point Classifier Model. The results showed that the applied models can be effectively utilized for data driven machinery health prognosis.