اچھائی؍نیکی دا بدلہ
کسے ملک اتے اک ظالم بادشاہ حکمرانی کر رہیا سی۔ اوہ اپنی رعایا اتے بہت ظلم کردا تے اوس دے دربار وچوں کسے نوں وی انصاف نئیں سی ملدا۔ جو وی اوس دے خلاف بولدا، اوہ اوس نوں جانوں مار دیندا سی۔ کسے نوں اوہ پھاہے لاندا تے کسے نوں بھکھے خون خوار جانوراں اگے سٹ دتا۔ کسے دے ہتھ پیر کٹ دیندا تے کسے دیاں اکھاں کڈھ دیندا۔ اک سپاہی نے بادشاہ دے ظلم دے خلاف آواز چکی تاں بادشاہ نے اوس نوں مارن دا حکم دے دتا۔ اوہ سزا توں بچن لئی اپنے گھروں نسیا تے جنگل وچ جا کے لک گیا۔ بادشاہ نے سپاہیاں نوں جنگل جا کے لبھن تے گرفتار کرن دا حکم دتا۔ سپاہی اوس نوں گرفتار کرن لئی جنگل جاندے نیں۔ پر اگوں اوہناں نوں شیر ملدا اے جو گرج دار آواز وچ بول رہیا سی۔ سپاہی ایہہ ویکھ کے ڈر جاندے نیں تے اوتھوں واپس بادشاہ کول آ جاندے نیں۔ جدوں سپاہی نے اوہناں نوں واپس جاندے ویکھیا تاں اوہ لکی ہوئی تھاں توں باہر آیا۔ اوہ وی شیر نوں ویکھ کے بہت خوف زدہ ہوندا اے۔ جدوں اوس غور نال آواز سنی تاں اوس نوں لگیا کہ شیر کسے مصیبت وچ اے۔ سپاہی جدوں شیر دے نیڑے ہویا تاں شیر نے اوس نوں کجھ نہ آکھیا، ہمت کر کے سپاہی شیر دے ہور نیڑے ہویا تاں اوس ویکھیا کہ اک تیر شیر دی لت وچ کھبیا ہویا اے تے تیر لگن پاروں لہولہان اے۔ سپاہی نے ہمت کر کے پہلاں شیر دی لت وچ تیر کڈھیا جس پاروں اوہدی پیڑ کجھ گھٹ گئی۔ مڑ اوس نے اوہدے پیر وچوں کنڈا کڈھیا۔ شیر اوس دی ایس رحمدلی تے انسان دوستی توں بہت متاثر ہویا اوس دے پیر چمے تے لنگر ہندا ہویا جنگل ول...
Plagiarism is a serious offense that defies the ethics of scholarship and research. Research students need to pay substantive attention to the dynamics and contours of plagiarism in their creative, ethical, and academic endeavors. Scholarship avenues such as online tutorials and work assignments are important sources of instructions for plagiarism-avoidance among students. The current study explores the frequency of consultation of scholarship avenues and the usage of plagiarism-avoidance techniques among research students in social sciences. The study also recommends a scale to investigate plagiarism-avoidance techniques. Furthermore, it also examines the level of the study in predicting the usage of plagiarism-avoidance. Using the online survey technique, 108 research students from Pakistan were sampled. The questionnaire was uploaded on several student-based research groups of social media, including; Facebook, and Yahoo groups. Bivariate linear regression analysis was used for hypothesis testing. Findings revealed that scholarship avenues lead to greater usage of plagiarism-avoidance techniques among research students (R2 =0.065). Supervisors, class-fellows, colleagues, and faculty of the department are prominent human scholarship avenues. Similarly, articles and books from the web, books from the library, the anti-plagiarism policy of the Higher Education Commission (HEC), and lectures delivered in the classroom were leading informational scholarship avenues. Stage of the study and consultation of the scholarship avenues were predictors of usage of plagiarism-avoidance techniques. It is recommended that (i) plagiarism-avoidance is promoted through prevention rather than detection, and that (ii) scholarship avenues (e.g. Delivering lectures, institutional policy, and interaction with relevant websites) are used for enhancing awareness about intellectual dishonesty.
The tremendous growth in electronic data of universities creates the need to have some meaningful information extracted from these large volumes of data. The advancement in data mining field makes it possible to mine educational data for improving the quality of the educational processes. This dissertation, thus, uses data mining methods to study the performance of undergraduate students. Two aspects of students’ performance have been focused on. Firstly, predicting students’ academic achievement at the end of a 4-year study programme, and secondly, studying typical progressions and combining them with prediction results. Predicting performance of students at the end of a university degree at an early stage of the degree program would help universities not only to focus more on bright students but also to initially identify students with low academic achievement and find ways to support them. The data of four academic cohorts of three faculties at NED University of Engineering & Technology, comprising 347 undergraduate students of Computer Science and Information Technology, 587 undergraduate students of Civil Engineering and 430 undergraduate students of Electronic Engineering, have been mined with different classifier models. The results show that it is possible to predict the graduation performance in final year at university using only pre-university marks and marks of first and second year courses, no socio-economic or demographic features, with a reasonable accuracy. Using only marks for students’ performance prediction and no other socio-demographic features will enable university administration to develop an educational policy that is easier to implement. This is the reason to investigate whether acceptable results can be obtained with marks only. Further, data of one cohort of students are used to predict students’ performance of the following cohort to test the generalizability and therefore the actionability of our approach. Moreover, using these classifiers, we explore how to derive courses that can serve as effective indicators for students’ performance at an early stage of the degree program for timely intervention. Indeed, once such courses are put in evidence, performance of students at the end of a course could be predicted and would allow for intervention while the indicator courses are actually taking place. A pragmatic policy is proposed to derive those indicators based on decision trees, a kind of classifiers that is explained in Chapter 2, Section 2.1.3.1. As the obtained decision trees have a lower accuracy than two other classifiers, though it is still acceptable, the goodness of the pragmatic policy needs to be further investigated. Therefore, we investigate how academic performance of students evolves over the four-year degree as a kind of triangulation. For this purpose, students of two consecutive cohorts of Computer Science and Information Technology have been clustered each year taking their final examination marks in individual courses in each of the four years. X-means and K-means clustering taking Euclidean distance for both algorithms have been applied. We put in evidence interesting typical progressions in particular students who have low marks all the way through their studies and students with high marks throughout their studies. The key contribution of our work is to understand the benefits of the pragmatic policy that is proposed earlier in this work. It turns that our pragmatic policy uncovers (almost) all the targeted students: students with low marks and students with high marks. Therefore, its implementation can be recommended.