Search or add a thesis

Advanced Search (Beta)
Home > تشریع اسلامی میں عرب تمدن کا لحاظ اور دور حاضر میں اس کی معنویت

تشریع اسلامی میں عرب تمدن کا لحاظ اور دور حاضر میں اس کی معنویت

Thesis Info

Author

محمد ابراہیم طاہر

Program

Mphil

Institute

University of Management & Technology

City

لاہور

Degree Starting Year

2017

Language

Urdu

Keywords

تہذیب و ثقافت , عرب ممالک

Added

2023-02-16 17:15:59

Modified

2023-02-19 12:20:59

ARI ID

1676730097187

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

’’نیل کے سنگ‘‘ایک اظہاریہ

نیل کے سنگ :ایک اظہاریہ

                                                                                                                ڈاکٹر نذر عابد

                                                                                (صدرِ شعبہ اردو، ہزارہ یونیورسٹی ،مانسہرہ)

’’نیل کے سنگ‘‘ ڈاکٹر الطاف یوسف زئی کی سفر نامہ نگاری کی مسافت کا دوسرا پڑائو ہے۔ اس سے قبل وہ ’’تھائی لینڈ کے رنگ‘‘ کے نام سے اپنا تھائی لینڈ کا سفر نامہ قارئین کی نظر کر چکے ہیں۔ ان کے اولین سفر نامے کو علمی و ادبی حلقوں میں خاصی پذیرائی حاصل ہوئی ۔مقامِ اطمینان ہے کہ سفر نامہ نگاری کی تخلیقی مسافرت کے اس دوسرے پڑائو پر بھی سفر نامہ نگار سفر کرنے اور سفر لکھنے ہر دو حوالوں سے کسی قسم کی جسمانی ،ذہنی اور روحانی تھکن کا شکار نہیں ہوا۔ ’’نیل کے سنگ‘‘ ان کے دیارِ مصر کے سفر کے احوال و تاثرات کی روداد ہے جس میں وہ ہر دم ایک تازہ دم مسافر کے روپ میں نت نئی منزلوں کی جستجو میں سرگرداں نظر آتے ہیں۔

مصر دنیا کی قدیم تہذیبوں میں سے ایک ہے جسے تاریخی اعتبار سے انسانیت کے لیے دریائے نیل کا تحفہ قرار دیا جاتا ہے۔ ڈاکٹر الطاف یوسف زئی کو دنیا کی قدیم تہذیبوں سے جانکاری کے حوالے سے ایک خاص شغف ہے۔ مصر میں گزارے گئے وقت کے دوران میں انھوں نے اپنی طبعی مناسبت سے خوب کام لیتے ہوئے مصری تہذیب کی جڑوں تک رسائی حاصل کرنے کی کامیاب کوشش کی ہے۔ اس کا واضح اظہار اس سفر نامے میں مصر کے مختلف تاریخی و تہذیبی مقامات کے احوال پڑھتے ہوئے ہوتا ہے۔ ڈاکٹر صاحب نے ایسے مقامات بیان کرتے ہوئے تاریخ سے بھرپور استفادے کے ساتھ ساتھ مقامی باشندوں میں گُھل مل کر وہاں کے ماضی و حال کے متعلق ایک تہذیبی و تمدنی منظر نامہ مرتب کیا ہے۔ تاہم...

English in the Workplace: Business English as a Lingua Franca in Boardwalk Direct Selling Company

With the current international competition among global companies, Business English as a Lingua Franca (BEFL) has become a necessity. As for one, Boardwalk Direct Selling Company recognizes the adoption of the BEFL concept within the organization to equip its workforce with adequate English language skills at par with global standards. This study aims to assess the organization’s current English proficiency and the readiness of its employees to embrace BEFL. This also presents the major English language skills areas that need improvement through training intervention. A stratified sampling method is utilized to extract data via an online survey. Respondents are strategically chosen to represent different strata such as organizational departments or groups, job levels, tenure, and age. A convenient size of 34 respondents participated in this study. Generally, respondents acknowledge the importance of the English language skill set in their job functions and as criteria for their career growth. Half of the sampling population affirms their English language proficiency. However, the study reveals that Boardwalk employees are willing to subject themselves to improving their English skills, most particularly in speaking and writing aspects. Given their willingness, the employees recommend that the company strengthen its BEFL trainings across the organization. Moreover, with the current setup of mostly working from home due to COVID restrictions, majority of the employees prefer online learning.

Improving Software Quality Prediction Using Intelligent Computing Techniques

Software Quality Prediction (SQP) has been an area of interest for the last four decades. The aim of quality prediction has been to identify the defect prone modules in software. With the help of SQP the defect prone modules can be identified and thus improved at early stages of software development. SQP is done using models that predict the defect prone modules. These prediction are based on software metrics. Software metrics and defect related information is recorded in form of datasets. These defect datasets contain instances of defect prone and not-defect prone modules. Major motive behind quality prediction is to identify defect prone modules correctly in early phases of development. Imbalanced datasets and late predictions are problems that affect this motive. In most of the datasets, the number of instances of not-defect prone modules dominate the number of instances of defect prone modules. This creates imbalance in the datasets. The defect prone modules are not identified effectively due to the imbalance. Effectively predicting defect prone modules and achieving high Recall using the public datasets becomes a challenging task. Predictions based on code metrics are considered late. Majority of the metrics in the datasets are code metrics which means that accurate predictions can be made once code metrics become available. Another issue in the domain of software quality and metrics is that software metrics used so far have inconsistent nomenclature which makes it difficult to study certain software metrics. In this thesis an association mining (AM) based approach is proposed that improves prediction of defect prone modules. The proposed approach modifies the data in a manner that a prediction model learns defect prone modules better even if there are few instances of defect prone modules. We use Recall to measure performance of the model developed after proposed preprocessing. The issue of late predictions has been handled by using a model which can work with imprecise values of software metrics. This thesis proposes a Fuzzy Inference System (FIS) based model that helps predict defect prone modules when exact values of code metrics are not available. To handle the issue of inconsistent nomenclature this thesis provides a unification and categorization framework that works on the principle of chronological use of metric names. The framework has been used to identify same metrics with different names as well as different metrics with same name. The association mining based approach has been tested using public datasets and Naive Bayes classifier. Naive Bayes classifier is the simplest and is considered as one of the best performers. The proposed approach has increased Recall of the Naive Bayes classifier upto 40%. Performance of the proposed Fuzzy Inference System (FIS), used to handle the issue of late predictions, has been compared with models like neural networks, classification trees, and linear regression based classifiers. The FIS model has performed as good as other models. Upto 10% improvement in Recall has been observed in case of FIS model. The nomenclature unification of approximately 140 metrics has been done using the proposed unification framework. Out of these 140 metrics approximately 6% different metrics have been used with same name in literature. Their naming issues have been resolved based on the chronological use of the names. Achieving better Recall using the proposed approach can help avoid costs incurred due to identification of a defect prone module late in software lifecycle when cost of fixing defects becomes higher. The proposed FIS model can be used for earlier rough estimates initially. Later, better and accurate estimates can be made when code metrics become available.