Search or add a thesis

Advanced Search (Beta)
Home > عصرِحاضر میں مطالعہ سیرت کی جہالت

عصرِحاضر میں مطالعہ سیرت کی جہالت

Thesis Info

Author

عذرا پروین

Program

MA

Institute

Government College University Faisalabad

City

فیصل آباد

Degree Starting Year

2015

Degree End Year

2017

Language

Urdu

Keywords

مطالعہ سیرت

Added

2023-02-16 17:15:59

Modified

2023-02-16 17:33:40

ARI ID

1676730122062

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

جواں جذبوں اور امکانات کا شاعر

جواں جذبوں اور امکانات کا شاعر
ڈاکٹر رحمت علی شادؔ
جینے کے ڈھنگ تیری جدائی سکھا گئی
اور یاد تیری مجھ کو ہے شاعر بنا گئی
شہرِ فرید میں جنم لینے والے ڈاکٹر فہد ملک ایک خوش اخلاق،خوش لباس، خوش اطوار اور خوبرو نوجوان ہیں۔ جن کی پہچان کے دو بڑے حوالے ہیں۔ ایک یہ کہ وہ ایک فرض شناس میڈیکل ڈاکٹر ہیںاور دوسرا معتبر حوالہ یہ بھی ہے کہ وہ پاک پتن کے ابھرتے ہوئے ایک عمدہ لب و لہجے کے نووارد شاعر ہیں۔ شہرِ فرید کی ادبی روایت میں ایک خوش گوار اضافہ ثابت ہونے والے فہد ملک کے کلام میں فنی و فکری ہر دو طرح کی جھلکیاں بخوبی دیکھی جاسکتی ہیں۔
ڈاکٹر فہد ملک کی شاعری میں سادگی اور سلاست کا نصر نمایاں ہے۔ وہ کبھی لفاظی ،ثقیل اور بھاری بھرکم تراکیب کے چکر میں نہیں پڑتے ان کو جو بات کہنا ہوتی ہے بڑے سادہ اور موثر انداز میں کہہ دیتے ہیں۔ انھوں نے غزل کے ساتھ نظم بھی لکھی ہے جہاں انھوں نے نہ صرف خیال اور موضوع کو بہتر انداز میں بیان کیا ہے بل کہ عام فہم استعارات و تشبیہات ،اضافتیں، اشارے کنایے اور روایتی علامات بھی استعمال کی ہیں۔ ان کے خیالات منفرد اور لہجہ زود فہم ہے۔ وہ کوئی بھی خیال پیش کرتے ہیں تو اس کو الجھاتے نہیں۔بل کہ کھول کر بیان کر دیتے ہیں۔کسی بھی شاعر کے کلام میں سہلِ ممتنع کا استعمال ایک عمدہ خوبی سمجھا جاتا ہے۔ کیوں کہ بڑے بڑے موضوعات اور بڑی بڑی باتوں کو چند موزوں الفاظ میں بیان کر دینا کوئی آسان بات نہیں۔ چھوٹے چھوٹے مصرعوں میں ایک مکمل اور بھرپور مضمون کو بیان کرنا غیر معمولی بات ہے۔ فہد ملک کی شاعری میں بھی سہلِ ممتنع کی متعدد مثالیں موجود ہیں۔ سہلِ ممتنع کا انداز لیے...

History as Profession and as Political Capital

History comes to us from various agencies not just academics in schools and colleges; but diverse inputs to all those who haven’t studied history, like popular history, through cinema, poetry, folklore, myths, theatre; history has several modes of percolation to society. Also, a kind of history is propagated in an organised manner as is done by organisations as RSS which is a practical approach to history as differentiated from an academic approach to history; the former is more political than the latter though both come with an aspect of politics. History thus has much wider reach than what is taught in schools or colleges.

Improved Meshless Methods and Their Engineering Applications

The research work undertaken in this dissertation is comprised of two parts. The first part is concerned about the comparative study of weak and strong meshless formulations for the numerical solution of elliptic boundary value problems. Meshless methods based on weak and strong formulation provide alternate numerical solution procedures to the well established solution techniques, such as finite element methods, finite difference methods, boundary element methods and finite volume methods. The meshless weak formulation considered in this dissertation is the well-known element free Galerkin method whereas, a strong meshless formulation chosen, is the local radial basis functions collocation method. The weak meshless formulation in the form of the element free Galerkin method is proposed while incorporating the new numerical quadrature technique based on multi-resolution Haar wavelets for approximating the displacement and strain modeled by elliptic boundary value problems in one- and two-dimensional spaces. The element free Galerkin method with numerical integration based on Gaussian quadrature has also been implemented for the numerical solution of the elliptic boundary value problems. In addition, a meshless collocation method has also been proposed in strong form using the local radial basis functions collocation method for the numerical solution of the elliptic boundary value problems. A comparative study in terms of accuracy and stability of both the weak and strong meshless formulations is carried out for the elliptic boundary value problems in one- and two-dimensional spaces. The second part of the research work undertaken in this thesis is focused on the applications of meshless methods for the solutions of solid mechanics and structural optimization problems. The element free Galerkin method with numerical integration based on Haar wavelets is also used to solve one- and two-dimensional elasto-static problems. Numerical solution obtained with these methods is in excellent agreement with analytical solution. Further, the element free Galerkin method is implemented with level set method for the two-dimensional structural optimization problems for minimum compliance design. The shape and topological sensitivities are obtained by the element free Galerkin method. The proposed topology optimization method is capable of automatically inserting holes during the optimisation process using the topological derivative approach. The structural geometry is updated through the numerical solution of modified Hamilton-Jacobi type partial differential equation by the level set method. Furthermore, the element free Galerkin method has also been combined with radial basis functions in the frame work of level set method for the solution of two-dimensional structural optimization problems. Furthermore, the finite element method has also been coupled with local radial basis functions based level set method. The original Hamilton-Jacobi equation has been transformed into a system of coupled ordinary differential equations. To highlight the associated advantages and disadvantages of the radial basis functions in the framework of level set method, a comparative study has also been carried out. The proposed methods are implemented for the optimal solutions of different types of structures with application of single and multiple loads.