بولیاں
پنجابی لوک گیتاں دی اک قسم بولیاں اے بولیاں جمع دا صیغہ اے۔ جیہدا واحد بولی اے تے جیدے کئی معنی نیں بولی دا لفظ زبان دے معنیاں وچ ورتیاں جاندا اے بولی پنجابی شاعری دی اوس قسم نوں کہندے نیں جیہدا صرف اکو مصرعہ ہوندا اے بولی اک مصرعہ ہون پاروں ردیف قافیہ نئیں ہوندا بعض کتاباں وچ بولی نوں دو مصرعے وچ ہیٹھ اُپر لکھیا جاندا اے انج لکھن وچ ہرج تے کوئی نئیں پر ویکھن والیاں نوں بھلیکھا پیندا اے کہ بولی دو مصرعیاں نال بن دی اے بھانویں اوہناں دویاں مصرعیاں وچ ردیف قافیہ نئیں ورتیا ہوندا۔
ذرا ساہ لین نوں روک کے پڑھن نوں پنجابی وچ ورام آکھدے نیں چھوٹے مصرعیاں وچ ورام دی لوڑ نئیں پیندی پروڈے تے لمبے مصرعیاں وچ دو، دو رام وی آجاندے نیں ایس لئی بولی دے مصرعے نوں جیہڑا لماں وی ہوندا ایں اک ورام نال پڑھدے نیں جہناں نے ایس بولی نوں دو مصرعیاں وچ بنا دتا ایں اوہناں نے ورام نوں صحیح نہیں ورتیا۔
ایہہ مثال ویکھو۔ بولی اے:
Farmers predominantly belong to lower class of the society, particularly in developing and under developing countries. This actuality really put them on back-foot in every sphere of life, including their various agricultural activities. For instance, they always face problems to fulfil their agricultural requirement, both for crop and non crop activities, and hence, not in position to get utmost benefits from their efforts. Being citizens of a developing country, Pakistani farmers come across the identical situation. As they are Muslims, therefore, avoid securing interest based loan from the financial institutions. Islamic financial system provides an alternate to such interest based arrangement in the shape of various financing techniques. Among these, Istisnā’ (manufacturing) is the most important one which can be used effectively for the fulfilment of various agricultural requirements. However, its role is more dominant in the satisfaction of non crop agricultural activities that is for example, manufacturing of some heavy agricultural machinery and equipments, installation of tube-wells and channels for appropriate irrigation system, construction of small houses for farmers in their lands etc. The present work discusses the theoretical background of this mode, available in the scholarly work of classical and contemporary Muslim jurists’ work, followed by the description that how it can be used for financing various sectors of agriculture. Study reveals the transaction is equally viable for the development of all sectors of agriculture like local farming, fish farming, dairy farming, poultry farming, horticulture etc. The intended results can be achieved when the financial institutions apply the transaction in its true spirit and philosophies envisaged for it by Islamic commercial law, and not mere a source of earning profit.
Subdivision is an easy and well-defined method to describe smooth curves and surfaces. Its application ranges from industrial design and animation to scientific visualization and simulation. This dissertation presents a variety of stationary and non-stationary interpolating and approximating subdivision schemes with shape parameters. The proposed families generalize the several schemes, previously proposed in the literature, are shown to be members of the family. Order of continuity, curvature, error bounds, deviation error and basic limit functions for several members of the family are computed. Moreover, these schemes are shown to outperform in several aspects comparative to the similar schemes previously proposed to the literature. The non-stationary schemes are based on sinusoidal functions and continuity properties are prove by asymptotic equivalence with stationary counter parts. A comparison between the proposed non-stationary schemes and their stationary counter parts shows the former to have better curvature behavior. It is proved that the limiting conic sections generated by proposed non-stationary schemes have less deviation from being the exact conic sections. Moreover, proposed 3-point ternary schemes with fewer initial control points produced better limiting conic sections than other existing schemes. Further the fractal behavior of binary interpolating subdivision schemes has been discussed. The association between the fractal behavior of the limit curve and the surface with the tension parameter is also elaborated. Some families of the schemes are constructed by fitting multivariate vi polynomial functions of any degree to different types of data by least square techniques. Furthermore, it is straightforward to construct schemes for fitting data in higher dimensional spaces by using proposed framework.