Search or add a thesis

Advanced Search (Beta)
Home > قرآن مجید میں عائلی معاملات بیانات کا تقابلی مطالعہ معارف القرآن مفتی محمد شفیع اور تیسیر القرآن عبدالرحمٰن کیلانی کی روشنی میں۔

قرآن مجید میں عائلی معاملات بیانات کا تقابلی مطالعہ معارف القرآن مفتی محمد شفیع اور تیسیر القرآن عبدالرحمٰن کیلانی کی روشنی میں۔

Thesis Info

Author

محمد اعظم

Supervisor

افتخار احمدحافظ

Program

Mphil

Institute

The Islamia University of Bahawalpur

City

بہاولپور

Degree Starting Year

2016

Language

Urdu

Keywords

تعارف تفاسیر , تیسیر القرآن , تعارف تفاسیر , معارف القرآن , عائلی مسائل و احکام

Added

2023-02-16 17:15:59

Modified

2023-02-19 12:20:59

ARI ID

1676730355627

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

شیخ احمد علی شوقؔ

جناب شیخ احمد علی شوقؔ

نہایت افسوس ہے کہ کہنہ ادیب و شاعر شیخ احمد علی صاحب متخلص بہ شوق نے ۲۷؍ اپریل کو گونڈہ میں انتقال کیا، مرحوم ۱۸۸۲؁ء اور ۱۸۹۰؁ء کے درمیان لکھنؤ سے ’’آزاد‘‘ نام کا اخبارنکالتے تھے، جو اس عہد کے معزز و مشہور اخباروں میں تھا اور اس زمانہ کے ادباء کا مظہر خیال تھا اور سرسید کی تحریکات سے کافی ہمدردی رکھتا تھا، کئی چھوٹی چھوٹی مثنویوں کے بھی وہ مصنف تھے، اسیرؔ مرحوم کے وہ شاگرد تھے اور غالباً وہ اس خانوادۂ تربیت کی آخری یادگار باقی تھے، انہیں کے عہد میں اردو کی نئی شاعری کا آغاز ہوا، مرحوم ان قدیم شعراء میں تھے، جنہوں نے اس نئے رنگ کے قبول کرنے میں جھجک نہیں کی۔
ترانۂ شوق کے علاوہ ان کی غالباً آخری مطبوعہ مثنوی عالم خیال کے چار رخ اردو شاعری میں ایک نئی چیز ہے، کاش ان کے احباب و اعزہ ان کے کلام کا مجموعہ شائع کرکے انکی روحانی یادگاروں کو زندہ رکھ سکیں۔ (سید سليمان ندوی، اپریل ۱۹۲۵ء)

Immunological memory as the fundamentals of vaccines Immunological memory and vaccines

The immune system also called as the defense system involves many different cells that work as soldiers in an individual. These immune cells provide protection against various pathogens. For better protection of an individual the immune systems has the ability to memorize or remember the pathogen. This ability is known as immunological memory. With the help of immunological memory the immune memory cells remember the antigen and are prepared if there is an encounter with the antigen in future. The immunological memory can be developed against certain strains with the help of different types of vaccines. Such types of vaccines that are currently being used to save lives are, Live attenuated vaccines, Toxoid vaccines, Subunit vaccines, Glyco-conjugated vaccines, and Killed/Inactivated vaccines. These vaccine show different efficiency. Hence, the immunological memory generated after a single vaccination may wear off with time. Multiple numbers of shots are required for the development of long term memory. All these types of vaccines vary from each other in their manufacturing and also in their mechanism of providing long term immunological memory. They show many pros and cons but their advantages are greater than their disadvantages. Thus, are preferred to be used for the betterment of mankind.   

Optimal Restoration of Spatially Variant Degraded Images Using Intelligent Methods

Image restoration is fundamental to visual information processing systems. In many real world scenarios, noise and blur are the two main unavoidable sources of degra- dation in images. The problem is deemed as an ill-posed inverse by nature due to the simultaneous occurrences of noise and blur in the image. Blurring function categorizes the degradation as space variant (SVD) if di erent spatial locations of the recorded scene are convolved by varying point spread function. In contrast, the degradation is categorized as spatially invariant (SID) if a unique point spread function blurs the whole image. This dissertation focuses on spatial degradations, initiating from space invariant towards space variant. Existing methods for restoration of SVD images, for example, neural networks and numerical optimization bear the limitations of high cost, lower restoration, less gen- eralization, discontinuity and instability for di erent spatial locations. It is learnt that three factors are vital to develop an e ective framework for restoration, which are: 1. The optimization of the ill-posed inverse restoration problem by minimizing constrained error function 2. A smoothness constraint 3. A regularization scheme The main objective of this dissertation is to improve the restoration results, by possible applications of new intelligent methods. This dissertation provides com- prehensive solutions to both spatial degradation problems, by considering above three factors. Firstly, SID images are restored, by a steepest descent based restora- tion approach. In this approach, an e cient smoothness constraint is proposed, to model the error function. In the next step, the steepest descent based approach is improved and a novel fuzzy regularization scheme is also proposed to better model the error function. It performed better than the existing methods on a speci c blur function and low power additive noise. However, local search properties of gradient based approaches and eventually lower restoration for SVD images, due to their high sensitivity for varying textures, noise powers and blurs allowed for the possible application of computational intelligence models. Finally, in this dissertation, a new optimization framework is proposed for image restoration of SVD images. In the proposed framework, particle swarm optimiza- tion based evolution is retained to minimize the Modi ed Error Estimate (MEE), for better restoration. The framework added hyper-heuristic layer to combine local and global search properties. Therefore, randomness in the evolution, augmented with apriori knowledge from problem domain, assisted in achieving the objective of better restoration. It introduced new swarm initialization and mutation of global best particle of the swarm. In addition, an adaptive weighted regularization scheme is introduced in MEE to cater with the uncertainty due to ill-posed nature of the in- verse problem. Furthermore, a new fuzzy logic and mathematical morphology based regularization scheme is also proposed in the framework, to improve the restoration stability and generalization, for SVD images. Di erent experiments are performed to observe the performance of proposed solu- tions. Visual and quantitative results are obtained and provided for each experiment. Signal-to-noise ratio (SNR) and mean-squared-error (MSE) are computed for com- parative analysis, which endorsed better restoration quantitatively, over well-known restoration methods. However, the stability in restoration performance of proposed framework is observed in visual results, for SVD images. Detailed experimental and comparative analysis shown better restoration, stabilization and generalization of the proposed framework for varied textures in standard and simulated images, and noises over well-known restoration approaches.