قریشی ثناء اﷲ (۱۹۲۰۔۱۸۲۵) ظفروال میں پیدا ہوئے۔ آپ قریشی تخلص کرتے تھے۔ صاحبِ طرز شاعر تھے۔ زمانہ کی دست برد کی وجہ سے آپ کا کلام نہیں ملتا۔ چند اشعار آپ کے ایک شاگرد رشید کی بیاض سے دستیاب ہوئے ہیں۔ ’’سرزمینِ ظفر وال‘‘ ظفر وال کے شعرا کے تذکرے سے بھی آپ کے کچھ اشعار ملاحظہ کئے جا سکتے ہیں:
مجرم نیا ہوں مرا پیشہ جرم ہے غافل تھا روزہ داری میں تارک نماز سے
بے شک گزر گیا ہوں میں حدِ گناہ سے کرتا رہا ہوں رحمت بے حد پہ ناز سے (۵۸)
۵۸۔ آتش کشمیری ،’’زمینِ ظفر وال‘‘، لاہور‘ ۱۹۵۲ء ، ص:۲۹۷۔۲۹۸
The traditional fiscal decentralization theorem claims that decentralized government can provide the goods and services at local level more efficiently. However, empirically it is still to explore that how fiscal decentralization affects gender parity. This study empirically investigates the impact of fiscal decentralization on gender parity in developing economies of Asia, Armenia, Azerbaijan, Indonesia, Iran, Kazakhstan, Kyrgyz, Mongolia, Myanmar, Thailand and Turkey. The study used dynamic penal da ta technique namely system GMM over the period of 2006-2020. The multidimensionality of fiscal decentralization is captured through three measures of fiscal decentralization i.e. Expenditure decentralization, revenue decentralization and composite decentralization. Further, it also examines the complementarity between fiscal decentralization and control of corruption to increase the gender parity. The results of the analysis show that expenditure decentralization is increasing the gender parity in developing economies of Asia. Additionally, control of corruption is a necessary reform to get the desired fruits of fiscal decentralization. Countries must focus on corruption aspect of local governments in implementing the expenditure, revenue and composite decentralization.
The aim of this thesis is to study the projective and curvature symmetries in non-static spacetimes. A study of non-static spherically symmetric, non-static plane symmetric, non-static cylindrically symmetric and special non-static axially symmetric spacetimes according to their proper curvature collineations (CCS) is given by using the rank of the 6 × 6 Riemann matrix and direct integration techniques. We consider the non-static spherically symmetric spacetimes to investigate proper CCS. It has been shown that when the above spacetimes admit proper CCS, they turn out to be static spherically symmetric and form an infinite dimensional vector space. In the non- static cases CCS are just Killing vector fields. In case of non-static plane symmetric spacetimes, it has been shown that when above spacetimes admit proper CCS, they form an infinite dimensional vector space. We consider the non-static cylindrically symmetric and special non-static axially symmetric spacetimes to study the proper CCS. It has been investigated that when above spacetimes admit proper CCS, they also form an infinite dimensional vector space. We consider the special non-static plane symmetric spacetimes to investigate proper projective collineations. Following an approach developed by G. Shabbir in [39], which basically consists of some algebraic and direct integration techniques to study proper projective collineations in the above spacetimes. It has been shown that when the above spacetimes admit proper projective collineations, they become a very special class of the spacelike or timelike versions of FRW K=0 model.