شہادت حضرت امام حسین ص
نحمدہ ونصلی علی رسولہ الکریم امّا بعد فاعوذ بااللہ من الشیطن الرجیم
بسم اللہ الرحمن الرحیم
معزز اساتذہ کرام اور میرے ہم مکتب شاہینو!
آج مجھے جس موضوع پر اظہار خیال کرناہے وہ ہے:’’شہادت حضرت امام حسین ؑ‘‘
غریب و سادہ و رنگیں ہے داستانِ حرم
نہایت اس کی حسینؓ، ابتدا ہے اسمٰعیلؑ
جنابِ صدر!
حضرت امام حسین ؓحضرت رسول کریمؐکے نواسے حضرت علی ؑکے لختِ جگر حضرت فاطمہؓ کے جگر گوشے اور حضرت امام حسن ؓکے بھائی تھے۔ یہی حسنین کریمینؓ سرور کائنات ؐ کی آنکھوں کی ٹھنڈک اور دل کا سکون تھے۔ محبوبِ خدا ؐان کے لیے اپنے سجدے طویل فرماتے ان کا رونا آپؐ پر گراں گزرتا۔ حضرت حسین ؓکے متعلق آپؐنے ارشاد فرمایاحسینؓ مجھ سے ہے اور میں حسینؓ سے ہوں۔ خدا اسے دوست رکھے جوحسین کو دوست رکھے۔
عزیز ساتھیو!
حضرت حسین ؓنے میدانِ کربلا میں بے مثال شجاعت، بہادری اور ایثار و قربانی کا مظاہرہ کیا آپ ؓنے اپنے اور اپنے اہل وعیال کے خون سے شجرِ اسلام کو سینچا۔آپ ؐنے اسلام کی حرمت اور بقا کی خاطر اپنا سرتو کٹوادیامگر باطل کے سامنے جھکے نہیں آپ ؓنے دنیا کے سامنے صبر ورضا اور قربانی کا ایسا نمونہ پیش کیا جس کی نظیر رہتی دنیا تک مشعل حق بن کر جگمگاتی رہے گی۔
یا حسینؓ ابن علیؑ سب پر تِرا احسان ہے
وہ تِرا ممنون ہے جو با ضمیر انسان ہے
جنابِ صدر!
یزید لعین ہر قیمت پر حضرت امام حسینؓسے بیعت لینا چاہتا تھا مگر سیدنا حسین ؑیزید کو خلافت کے اہل نہیں سمجھتے تھے۔ آپ ؓتدبر، تقویٰ اورعلم و حلم کے جس اعلی مقام پر فائز تھے اور پوری امت مسلمہ کی نظر یں آپ پر لگی ہوئی تھیں، خلافت کے لیے عدالت و تقویٰ کے جس معیار کی...
Since the creation of this world, there have been disagreements in different matters among mankind. Technically, difference in opinion is of two kinds. One is Invalid or unpleasant disagreement; which has no valid reasoning and it bases on other evil objectives. While the other one is valid or pleasant disagreement; which bases on valid reasoning. The second one is also known as healthy disagreement. The disagreements among Islamic Scholars, ‘Ulamā and fuqahā relates to the second kind; valid disagreements, because they are established on valid reasons and evidences. They are also considered as a blessing for mankind. That is why these scholarly and fiqhī disagreements are always deeply admired. An important book scholarly written on the subject matter is ‘Kitāb al Tajrīd’ by Imām Qudūrī. This article is an introduction to his book ‘Kitāb al Tajrīd’ and its style. It is a distinct and excellent book of its kind. The features of the book motivate to discuss about it.
The real-time information for land use/land cover (LU/LC) data is very important for resource management, future prediction, and crops growth assessment. Although conventionally LU/LC data is collected through field survey but remote sensing data collection has its own importance due to time, accuracy and transparency factors. During the last decade, advancement in spaceborne multispectral data has proven to be beneficial over airborne data for land monitoring due to their increased spectral resolution. The objective of this research is to compare and analyze the five types (Fertile, Green pasture, Desert-rangeland, Bare and Sutlej-river land) of LU/LC multispectral data (five bands) acquired by multispectral radiometer (MSR5) and digital photographic data acquired from high resolution 10.1 megapixel Nikon camera. All experimentation has been performed using MaZda software version 4.6 with WEKA data mining tool version 3.6.12 on Intel® Core i3 processor 2.4 gigahertz (GHz) with the the 64-bit operating system. This research is conducted at The Islamia University of Bahawalpur province Punjab (Pakistan), located at 29°23′44″N and 71°41′1″E. For photographic data, image pre-processing techniques are applied, i.e., grayscale conversion, enhanced the contrast and sharpening procedure. Extract the 229 statistical texture features of the LU/LC data of each 512×512 image size. Three feature selection techniques fisher (F), the probability of error plus average correlation coefficient (POE+ACC) and mutual information (MI) are combined together (F+PA+M) and extract thirty most discriminant features out of 229 features space of each photographic image. For feature reduction, non-linear discriminant analysis (NDA) for photographic data (texture data) and linear discriminant analysis (LDA) for remote sensing data (multispectral data) have shown better clustering as compared to principal component analysis (PCA) and raw data analysis (RDA). Finally, we have employed different data mining classifiers namely, Artificial Neural Network (ANN), Random Forest (RF), Naive Bayes (NB) and J48 for classification. It is observed that artificial neural network (ANN: n class) is applied for training and testing by cross-validation (80-20) on these texture and multispectral data. It showed comparative better 91.332% accuracy for texture dataset and 96.40% for multispectral (MSR5) dataset respectively among all the employed classifiers.