کل شیٔ ھالک الا وجھہ
آہ!کیوں کرکہئے کہ فلک علم وفضل کاآفتاب رخشندہ غروب ہوگیا۔بزم انس وقدس کی شمع فروزاں گل ہوگئی۔درج تقوی وطہارت کالعل شب چراغ گم ہوگیا۔شریعت وطریقت کے اسرار ورموز کامحرم جاتارہا۔اخلاق ومکارم اسلامی کے ایوان میں خاک اُڑنے لگی۔جو کل تک لاکھوں انسانوں کے لیے طبیب عیسیٰ نفس تھا خود وہ موت کی آغوش میں جا سویا۔ملت بیضا کاسہارا، فرزندان توحید کی امیدوں کامرجع، پیروان دین محمدی کی تمناؤں کا مرکز راہی ملک عدم ہوگیا۔یعنی حضرت مولانا سید حسین احمد صاحب مدنی نے ۵/دسمبر کوبمقام دیوبند سہ پہر میں داعیٔ اجل کولبیک کہا۔انا ﷲ وانا الیہ راجعون۔
حضرت مولانا کی وفات ایک فرد،ایک شخص اورایک انسان کی موت نہیں ہے۔بلکہ ایک خاص دور، ایک عہد اورحیات ملّی کے صحیفہ کے ایک باب کا اختتام ہے۔حضرت مولانا گنگوہی اور حضرت شیخ الہند نے اپنے مقدس ہاتھوں سے جو چمن لگایا تھا مولانا اس چمن کی آخری بہار تھے۔ حضرت حاجی امداد اﷲ اور نانوتوی نے شریعت وطریقت، علم وعمل اورتقدس وطہارت کی جوبزم سجائی تھی، اجل کی باد صر صر اُس کے چراغ بجھاتی رہی مگر ساتھ ہی چراغ سے چراغ بھی روشن ہوتے رہے اوربزم کبھی تاریک نہیں ہوئی لیکن اب اس بزم کاآخری چراغ بجھ گیا۔روشنی کی جگہ ظلمت نے لے لی۔تاریکی چھا گئی اوربزم کی بساط الٹ گئی۔
اسلام میں اعلیٰ اورمکمل زندگی کاتصور یہ ہے کہ تزکیۂ نفس اورتصفیۂ باطن کے ساتھ فکرونظر کی بلندی اورجہدوعمل میں پختگی اورہمہ گیری ہواوریہ سب کچھ تعلق باﷲ کے واسطہ سے ہو۔مولانا اس دور میں اس معیار پر جس طرح پورے اُترتے تھے ہندوپاک توکیا پورے عالم اسلام میں اس کی نظیر نہیں مل سکتی۔ علم و فضل کایہ عالم کہ اسرار وغوامض شریعت وطریقت ہروقت ذہن میں مستحضر۔کسی سائل نے کوئی مسئلہ پوچھا نہیں کہ معلومات کاسمندر ابلنے لگا۔چنانچہ حضرت مجدد الف...
Seal of Prophet-hood (Khatam-e-Nabuwat) is one of the critical issues which Islam has particularly emphasized to such a degree that a person cannot enter in the fold of Islam or may remain a Muslim without it. People, who believed in Torah & Gospel also believed that a prophet of mercy will descend with clear signs of prophet-hood. He will lead the world and guide them to the righteous path and will disclose the changes in Gospel. They also believed that the Prophet Muhammad (PBUH) will reveal the prophet-hood of Jesus and confirm that Jesus is a man of Allah with bestowed miracles. The world knows that the complete code of life after Moses was given only to the last Prophet Muhammad (PBUH). The prophet-hood has been sealed with Hazrat Muhammad (PBUH) is proven from Holy Quran as well as from Torah & Gospel. Torah & Gospel openly declare the prophet-hood of Hazrat Muhammad (PBUH) as “The Stone of Corner”. So the Holy Prophet (PBUH) himself announced the seal of his prophet-hood which none of the prophets of Bani Israel claimed in their lives. The prophet Jesus (A.S) also made efforts to clarify this point in front of his followers through several parables. These parables openly depict the authenticity of Islam and Hazrat Muhammad (PBUH) being the seal of prophets. This article provides information regarding predictions about Hazrat Muhammad (PBUH) as the last and final of the prophets of Allah Almighty, through Old & New Testaments as justified by Holy Quran. It also explains the status and value of the belief of “Finality of Prophet-hood” according to the Islamic teachings.
Macula is the most vital part of retina where the central vision is formed and any damage to macula could result in severe visual impairment or even blindness. The group of diseases that affects macula are collectively known as maculopathy and the symptoms of maculopathy usually appear in late stages when it becomes very difficult to completely recover the subject’s lost vision. There are many retinal imaging techniques which are used to visualize human retina but optical coherence tomography (OCT) is the most widely used technique nowadays because it can show early symptoms of maculopathy by capturing retinal cross-sectional regions. Many researchers have worked on extracting retinal information from OCT images. However, to the best of our knowledge, there is no literature available that provides a complete suite for the extraction and identification of retinal layers along with the fluid segments for the diagnosis as well as grading of maculopathy as per clinical standards. This thesis presents a robust framework that first extract and characterize up to nine retinal layers along with retinal fluids from OCT volumetric scans irrespective of their quality or acquisition machinery. Then, it utilizes the extracted retinal information for the diagnosis and grading of maculopathy. Furthermore, the proposed framework uses the segmented layers for the reconstruction of 3D retinal surfaces as well as for the 3D modeling of human retina. To extract retinal layers, the novel structure tensor graph search (STGS) framework has been proposed. STGS first computes coherent tensors which highlights the layer variations and then using those variations, it traces the layers iteratively by decomposing a tensor with maximum coherency into an undirected graph. After extracting the layers, the retinal fluids are automatically extracted through the proposed TU-Net architecture. TU-Net is a hybrid architecture consisting of three convolutional neural networks namely TU-Net-1, TU-Net-2 and TU-Net-3. TU-Net-1 extracts retinal fluids from the candidate scan through semantic segmentation, TU-Net-2 takes the extracted fluid map and identify intra-retinal and subretinal fluids along with measuring their respective volume. TU-Net-3 is responsible for diagnosing and grading maculopathy as per the clinical standards. Furthermore, the proposed framework utilizes the extracted layers for generating a highly detailed 3D presentation of retina through BowyerWatson based Delaunay triangulation algorithm. The proposed framework has been validated on publicly available Duke datasets (containing cumulative of 42,281 scans from 439 subjects), Biomedical Image and Signal Analysis dataset (containing 4,260 scans of 51 subjects), Zhang dataset (containing cumulative of 109,309 OCT scans) and local Amanat dataset (containing 372 scans of 9 subjects). The proposed framework achieved the mean accuracy of up to 94.62% for accurately extracting nine retinal layers, achieved the mean dice coefficient of 0.906 for accurately extracting the retinal fluids, achieved the accuracy of 98.75% for correctly identifying intra-retinal and sub-retinal fluids and achieved the accuracy of up to 93.42% for grading maculopathy as per clinical standards. Moreover, the proposed framework has been compared with other state of the art solutions on different publicly available datasets where it significantly outperformed them in extracting retinal layers, retinal fluids as well as in diagnosing maculopathy.