Search or add a thesis

Advanced Search (Beta)
Home > شیخ عبدالحق محدث دہلوی اور ان کی علمی خدمات

شیخ عبدالحق محدث دہلوی اور ان کی علمی خدمات

Thesis Info

Author

ثریا نیاز

Supervisor

حسن الدین ہاشمی

Program

MA

Institute

The Islamia University of Bahawalpur

City

بہاولپور

Degree Starting Year

1978

Language

Urdu

Keywords

شخصیات

Added

2023-02-16 17:15:59

Modified

2023-02-17 21:08:06

ARI ID

1676730727197

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

فرد قائم ربط ملت سے ہے تنہا کچھ نہیں

فرد قائم ربط ملت سے ہے تنہا کچھ نہیں
نحمدہ ونصلی علی رسولہ الکریم امّا بعد فاعوذ بااللہ من الشیطن الرجیم
بسم اللہ الرحمن الرحیم
معزز سامعین اور میرے ہم مکتب ساتھیو! آج مجھے جس موضوع پر لب کشائی کی سعادت حاصل ہورہی ہے وہ ہے:’’فرد قائم ربط ملت سے ہے تنہا کچھ نہیں ‘‘
صدرِذی وقار!
فرد ملت کی بنیادی اکائی ہے ،فرد ہے تو ملت ہے، فرد ہے تو قوم کا وجود ہے، فرد ہے تو اس کائنات کی رنگینیاں ہیں، فرد ہے تو اس کا ئنات کی رعنائیاں ہیں ، فرد ہے تواس گیتی کے گلشن میں بہار ہے، فرد ہے تو اس گلستانِ ہستی میں نکھارہے۔
جنابِ صدر!
یہ مصرع ہمیں اتحاد کا درس دے رہا ہے۔ہمیں اتحاد کی بابت آگاہ کر رہا ہے، فردکا وجود ہی اتحاد کی بدولت قائم ہے، اتحادکا لفظ ہے ہی بڑی جاذبیت کا حامل ، یہ جس فقرے میں آ جائے اس کے معنی میں حسن پیدا ہو جاتا ہے، چند اینٹیں متحد ہو جائیں تو مکان کی تعمیر ہو جاتی ہے، چند قطرے متحد ہو جائیں تو بحر بے کنار کی شکل اختیار کر لیتے ہیں۔
صدرِ ذی وقار!
اتحاد جس صورت میں بھی موجود ہو قابل تحسین تصور کیا جاتا ہے، جوقوم آپس میں مربوط ہوتی ہے وہ ہر لحاظ سے خوش و خرم ہوتی ہے، اس کی فضاؤں میں آلودگی کا زہر نہیں ہوتا، اس کے کھلیانوں میں غیر نافع بوٹیاں نہیں اگتیں، اس کے شجر سایہ دار خزاں آشنا نہیں ہوتے ، اس کے میدان ویران نہیں ہوتے ، اس کے ہسپتال آباد نہیں ہوتے۔
جنابِ صدر!
اسلام میں اتحادِ ملی پر بڑا زور دیا گیا ہے، حدیث پاک میں ہے کہ مسلمان مسلمان کا بھائی ہے، مسلمان مسلمان کوگالی نہیں دیتا، مسلمان مسلمان کو برا بھلا نہیں...

Correlation Between Internal and External Assessment at University Level: Acase Study of I. E. R, University of Peshawar

Abstract: Evaluation is the backbone of our education system. It is one of the important factors of the three pillars of our education system. The three pillars are: educational objectives, teaching learning process and evaluation or assessment. Assessment, scores or grades are one of the factors of the main concern for the students of any academic programme. The present study is aimed to investigate the correlation between the internal and external assessment of Master of Education (M. Ed) examination of the students of Institute of Education & Research (I.E.R), University of Peshawar. In total all 200 students of university of Peshawar who appeared in the M. Ed. Annual examinations were taken as a sample being convenient to the researcher. The data was obtained from the Examination section of the University of Peshawar. The data so obtained was then analyzed through SPSS and it was concluded that both the Internal and External assessments were correlated. The implications were discussed. Key Words:           Correlation, Assessment, Case study, M. Ed, University                              of  Peshawar.  

On Exact Solutions of Some Nonlinear Partial Differential Equations of Integer and Fractional Order

One of the major consequences of mathematical modeling is nonlinear partial differential equations (NLPDEs). They can be used to analyze and predict the characteristics of many nonlinear real-life phenomena, such as acoustic waves, heat transfer, wave propagation, plasma fluid flow, and diffusion processes, etc. Exact solutions of these NLPDEs gives us the means required to simulate and predict the relevant nonlinear real-life phenomena. Recently, a class of exact solutions (known as soliton solutions) has gained considerable attention due to the potential in mimicking real-life solitary waves. As these types of waves are a very important part of wave propagation in different media, this attention is justified. In this work, we have considered a number of NLPDEs and nonlinear fractional partial differential equations (NLFPDEs) representing certain real-life problems. We have worked out their exact soliton solutions by employing certain mathematical techniques, such as the Generalized Kudryashov Method, Exponential Rational Function Method, Modified Exponential Rational Function Method, (?′ ?2 )-Expansion Method, Auxiliary Equation Method, Khater method, and Generalized Riccati equation mapping method, etc. We have applied these methods to obtain exact solitary wave solutions to a number of NLPDEs and NLFPDEs, such as, NLPDEs representing the van der Waals normal form for fluidized granular matter, the space-time fractional Klein-Gordon equation, space-time fractional Whitham-Broer-Kaup (WBK) equation, time fractional Hirota-Satsuma Coupled Korteweg-de Vries (HSC KdV) equation, (3+1)-dimensional time fractional KdVZakharov-Kuznetsov (KdV-ZK) equation, space-time fractional Boussinesq equation, space-time fractional (2+1)-dimensional breaking soliton equations, space-time fractional Symmetric Regularized Long Wave (SRLW) equation, time fractional (2+1)-dimensional nonlinear Zoomeron equation, space-time fractional Sharma-Tasso-Olver (STO) equation, time fractional Kaup-Kupershmidt (KK) equation, space-time fractional coupled Burgers equations, space-time fractional Zakharov Kuznetsov Benjamin-Bona-Mahony (ZKBBM) equation, ill-posed Boussinesq equation, Nonlinear Longitudinal Wave (NLW) equation, time fractional Sharma-Tasso-Olver (STO) equation and conformable Caudrey-DoddGibbon (CDG) equation. These introduce us to several types of solitary wave solutions like soliton, singular soliton, kink wave, periodic wave, singular kink wave, multiple-soliton wave, multiple periodic solutions, bell-shaped soliton solutions, bright-dark soliton, nontopological (bright) soliton solutions, topological (dark) soliton solutions, cusp-like singular soliton, hyperbolic, trigonometric, exponential and rational solutions. These methods include the use of certain transformations, which transform the given partial differential equation into an ordinary differential equation. For nonlinear fractional partial differential equations (NLFPDEs), an analogous reduction has been achieved by using fractional complex transformations. Besides these suitable transformations, many other strategies have also been used to get exact solutions to the NLPDEs or NLFPDEs at hand. These include using appropriate balancing principles and computer algebra systems such as MAPLE and MATHEMATICA. We have focused on finding methods which could give us such exact solutions which have not been reported yet. Or, even if they have been reported, we have tried to find a more general form of these solutions. To achieve that goal, besides using the already existing techniques, we have also modified the existing methods to hopefully find more general solutions. After the computation of these exact solutions, we have verified them by plugging them back into their respective differential equations. They are found to satisfy their respective differential equation exactly and their solitary wave behavior is captured with the help of graphical simulation.