کتاب بہترین ساتھی
نحمدہ ونصلی علی رسولہ الکریم امّا بعد فاعوذ بااللہ من الشیطن الرجیم
بسم اللہ الرحمن الرحیم
معزز اسا تذہ کرام اور میرے ہم مکتب ساتھیو!
آج مجھے جس موضوع پر لب کشائی کرنی ہے وہ ہے:’’کتاب بہترین ساتھی‘‘
صدرِذی وقار!
کتابوں سے محبت عظیم لوگوں کا شیوہ ہوتا ہے، کتابوں سے محبت کر نے والا آسمانوں کی بلندیوں پر پرواز کرتا ہے، کتابوں کا مطالعہ کر نے والا کبھی تنہائی کا شکار نہیں ہوتا، کتب بینی ایسا شوق وذوق ہے جس سے جہالت کے بادل چھٹ جاتے ہیں اور مطلع دل و دماغ پر صاحبِ علم و دانش کا آفتاب و ماہتاب چمکناشروع ہو جاتا ہے۔
جنابِ صدر!
کتب کی رفاقت ایک ایسی رفاقت ہے کہ جو اپنے ہم نشیں کو بھی تنہائی کا شکار نہیں ہونے دیتی، جو اپنے ہم نشیں کے دل میں خلوتوں اور تنہائیوں کی وحشت کو ختم کر کے محبت و مودّت کے شگوفے کھلاتی ہے، کتب کے مطالعہ سے تاریخِ عالم پڑھنے کا موقع ملتا ہے۔ قوموں کے عروج و زوال سامنے آتے ہیں، قوموں کی معاشی ، اقتصادی، سیاسی اور روحانی زندگی سے آشنائی ہوتی ہے۔
محترم صدر!
تاریخ اسلام اس بات پر شاہد ہے کہ مسلمانوں کو کتب بینی و مطالعہ میں ہمیشہ ایک امتیازی مقام حاصل رہا ہے، مسلمانوں نے ہمیشہ کتابوں سے محبت کی ہے ، دسمبر کی زمستانی ہوائیں ہوں، یا جون کی تڑپا دینے والی دھوپ، وقت عصر ہو یارات کا پچھلا پہر ،تدریسی اسباق کی تیاری ہو یاممبر رسول پر وعظ کے لیے تقریر کی تیاری، کسی امتحان کی تیاری کرنی ہو یا فکرآخرت کی تیاری کتب ہائے خیر سے ذی شعور اور ذی فہم و فراست افراد کی دوستی مثالی رہی ہے۔
جنابِ صدر!
اچھی کتاب ایک بہترین سرمایہ ہوتی ہے۔ دنیا و آخرت کی ساتھی...
Shaykh Muhammad Nasiruddin Albani is known as the famous scholar of the twentieth century AD. He served in Hadith for almost 60 years. He has also some particularities in the hadith’s research in which he apposed a lot of scholars. The most important of them is that he has said that some Ahadith of Sahih Bukhari and Sahi Muslim are weak. Similarly, in contrast to the previous muhaddiseen, some weak traditions have said correct and some reliable narrators as weak. Apart from this, there are two particularities of him that are very important in the research world. One is that he has explored many of unknown Ahadith and secondly he has divided the books of Hadith into two parts; weak and accurate. Some detail of these particularities is presented in this article.
Majority of the time-frequency representations (TFRs) make some kind of compromise between auto-component’s resolution and cross-terms suppression during the analysis of time varying signals. Linear TFRs offer no cross-terms but have low resolution of auto-components. Quadratic TFRs offer better resolutions of auto- components but have cross-terms. The proposed research focuses on TFRs that can combine the advantages of both linear and quadratic TFRs. In the first part of this research, a modified form of Gabor Wigner Transform (GWT) has been proposed by using adaptive thresholding in Gabor Transform (GT) and Wigner Distribution (WD). The proposed GWT combines the advantages of both GT and WD and provides a powerful analysis tool for analyzing multi-component signals. This technique is however not very efficient for multi-component signals having large abrupt amplitude variation in its auto-components. In multi-component signal analysis where GWT fails to extract auto- components, the combination of signal processing techniques such as fractional Fourier transform (FRFT) and image processing techniques such as image thresholding and segmentation have proven their potential to extract auto- components. In the second part of this research, an algorithm is proposed for an effective representation in time-frequency domain called Modified Fractional GWT that combines the strengths of GWT, image segmentation and FRFT. This representation maintains the resolution of auto-components besides recognizing FRFT, a powerful tool for signal analysis. Performance analysis of proposed fractional GWT reveals that it provides solution of cross-terms of WD and worst resolution faced by linear TFRs. In the third part of this work, a novel algorithm for effective representation of multi-component signals in time-frequency domain is proposed. The scheme not only suppresses the cross terms but also ensures that all the auto-components even very weak ones are properly shown in time-frequency domain. The scheme also results in much localized time frequency representation (TFR). The algorithm uses the strengths of GWT and linear time-varying (LTV) filtering in time domain to design a filter in time-frequency domain that suppresses cross terms and enhances auto components through an iterative approach. Performance analysis of proposed algorithm reveals viithat it provides concentrated and high resolution auto-components which are desirable for a TFR. The TFRs are used to separate and extract signal’s auto-components which are buried in noise and are used to estimate the instantaneous frequency of a multi- component signal in low SNR scenarios. The modified GWT can be used for detection, identification and classification of power quality disturbances (such as voltage sag, voltage swell, transients and harmonics). The LTV based GWT and modified fractional GWT can be extended for IF estimation of auto-components of EEG Seizure.