عقل مند بادشاہ
کسے شہر وچ اک غریب بندہ رہندا سی۔ انتہائی نیک تے محنتی، سارا دن محنت کردا تے جو کجھ ملدا اوس اتے ربّ دا شکر ادا کردا۔ بچت کر کے اوس دس ہزار روپے جمع کر لئے سن۔ اچانک اوس نوں ضروری کم لئی دوجے شہر جانا پیا۔ اوس پیسے نال لے جاون دیبجائے اپنے گوانڈھی کول امانت رکھوا دتے۔ پر امانت دیندے ویلے کوئی گواہ نئیں سی موجود تے نہ ای اوس امانت دی کوئی رسید لئی۔
چھ مہینیاں پچھوں جدوں اوہ بندہ واپس آیا تاں اوس نے گوانڈھی کولوں اپنی امانت منگی۔ تاں گوانڈھی صاف مکر گیا۔ الٹا اوس دی بے عزتی وی کیتی۔ اوہ ہر روز امانت لین جاندا پر گوانڈھی اوس دی کوئی گل نہ سندا۔ شام نوں اوہ تھک کے گھر واپس آ جاندا۔ آخر کار اوس نے فیصلہ کیتا کہ اوہ اپنا مقدمہ بادشاہ دی عدالت وچ لے کے جاوے گا۔ اوہ بادشاہ دی عدالت وچ اپڑیا تے بادشاہ نوں دسیا کہ اوس کولوں غلطی ہوئی اے کہ اوس بغیر کسے گواہ تے رسید دے دس ہزار روپے گوانڈھی کول امانت راکھوے سن پر ہن اوہ اوس دی امانت واپس نئیں کردا۔ ایس لئی میرے پیسے مینوں واپس لے کے دیو۔
بادشاہ نے اوس نوں آکھیا کہ بناں ثبوت دے میں اوس نوں گرفتار نئیں کر سکدا۔ پر اک تجویز اے کہ میں کل عصر دی نماز توں بعد سیر کردا اوس بندے دی دوکان اتے آوے گا۔ توں وی اوتھے آ جاویں۔ میں تینوں جھک کے سلام کراں گا۔ توں بڑی لاپرواہی نال اوس دی جواب دیویں ایسے طرں میں تیرے نال جو وی گلاں کراں توں انتہائی لاپرواہی نال اوہناں دا جواب دینا ایں۔
بادشاہ دے دسے ہوئے منصوبے دے تحت اگلے اوہ بندہ...
Emergence of biomedical research and innovation with an unprecedented speed has created number of opportunities and challenges for policy makers. On the one hand, it is now possible to introduce tailor-made personal medication regime for an ailing patient to offer state of the art treatments. On the other hand, several ethical and legal issues have been raised due to the complex nature of emerging technologies. Policy makers all over the world are constantly addressing these challenges by continuously upgrading their respective professional and regulatory frameworks. This article is an attempt to highlight Shariah maxims which have contemporary application in medical field. Lately, there has been a lot of interest in the debate of Shariah maxims and many scholars have used maxims-based analytical frameworks to show the dynamic application of Islamic law. This article builds upon those works by focusing on issues related to the medical field.
The main objective of this research is to develop a diagnostic system, based on standard or objective parameters rather than non-standard or subjective parameters, which are already being employed by radiologists, for the classification of abnormalities present in mammograms, as benign or malignant. Radiologists differentiate biological behavior of these abnormalities on the basis of visual parameters such as size, shape and boundaries of the tumors. A benign tumor has small size, well-defined margins and homogenous texture, whereas, a malignant tumor typically has larger size, poorly margined and heterogeneous texture. Due to the limitations of human perception all these parameters become subjective, which cause a high risk of misinterpretation, inter and intra- observer variation, for correct decision. Considering all these factors, development of a compact system is required; (i) to accurately classify malignant and benign abnormalities within a reasonable time and cost, (ii) to increase diagnostic consistency by providing an objective (rather than subjective) evaluation. To meet the objectives a CAD system has been developed and employed on two types of data; (a) test data and (b) experimental data. In test data, five wheat varieties are differentiated by this system. For this purpose five types of 77 statistical textural features, which may be grouped as; first order (histogram) features, second order (GLCM) features, higher order (GLRM) features, autoregressive features, and gradient matrix based features are calculated from ROIs (8x8) (16x16) (32x32), and (64x64) under, μ±3σ and 1-99% normalization conditions by using MaZda software. The most relevant features for each size of ROI are selected by three approaches; Fisher’s Co-efficient, Probability of Error plus Average Correlation Co-efficient, and Mutual Information Co-efficient. In this way the most relevant 10 features are selected by each method. We received very poor results when data analysis capability is verified on the basis of 10 features selected by each method for each size of ROI except (64x64), by three multivariate techniques; PCA, LDA, and NDA under both normalization conditions, by a software „B11‟, integrated with MaZda.To improve the results, a set of 19 features is obtained by merging the features selected by each approach. An excellent clustering result with an accuracy of 99.67% is received, when data of these 19 features extracted from ROI (64x64) under 1-99% normalization, is deployed to NDA projection space. By using supervised classification approach, artificial neural network (ANN) the system is trained and tested on the basis of 70% and 30% of input data respectively. We received an accuracy of 99.90% and 93.11% in training and testing phase respectively. On the basis of results for test data analysis, it is concluded that the proposed CAD system produces the best result for large ROI window size when a combined set of features is deployed in NDA projection space. The experimental data (mammograms) is analyzed under these settings. The mammographic data is consisted of two types of images, Craniocaudel (CC) and Medioletral Oblique (MLO) view images. Unlike to other researchers in this work both types of images are considered in separate sections. As the experimental data (mammograms) has fine and micro-texture, so, initially abnormal regions in CC view images, marked by radiologists, are tried to be analyzed on the basis of combined set of features (discussed above for the case of test data), extracted from ROI (8x8) under above mentioned both normalization conditions. As NDA approach based on ANN classifier and a number of options are available on „B11‟ software to configure this classifier. Data analysis capability of selected features under different architectural settings of ANN on the basis number of neurons in input hidden layer and learning rate „η‟ in NDA projection space is tried. Then the classifier is trained and tested on the basis of architectural settings for which the best clustering is received, by splitting data in 70/30 ratio respectively. For ROI (8x8) we received testing accuracy of 91.18% when the classifier is configured with 2 neurons in hidden layer and learning rate is set at 0.15 when the features are extracted under μ±3σ normalization condition. For same of size of ROI when features are extracted under 1-99% conditions, the best testing accuracy of 88.44% is obtained for same architectural settings (2 neurons and η=0.15). As the performance of the system for ROI (8x8) is not satisfactory, so, we tried to classify same data by extracting features from ROIs (16x16) under the both normalization approaches. Following the same procedural steps we received an accuracy of 92.56% for testing phase, when the classifier is configured with 2 neurons in hidden layer at learning rate 0.20 and the features are extracted under 1-99% normalization. We received excellent classifier testing result with an accuracy of 97.55% when the classifier is configured with 3 neurons in hidden layer at learning rate 0.15 and the features are extracted by applying μ±3σ approach. For MLO view images we obtained a testing accuracy of 84.41%, when the classifier is configured with 5 neurons in hidden layer with learning rate is set at 0.22 and the data is normalized by μ±3σ approach.