ارادھنا
اے ربِ رحیم و کریم۔۔۔!
اِن اللہ علی کلِ شیئٍ قدیر!
میں خانہ بدوش ، سیلانی ، آوارہ!
تیری زمیں پر۔۔۔تیرے موسموں کے ساتھ محوِ سفر ہوں
تو کریم۔۔۔سبز موسم کا لباس پہن کر!
تو رحیم۔۔۔خوشبو کی طرح روح میں اُتر کر!
میرے تڑپتے سسکتے دل کو۔۔۔!
اپنی آغوش میں لے کر۔۔۔اپنے ہاتھوں سے سہلاتا ہے
دشتِ بیاباں میں دل فریب آہو بلا کر !
ستاروں کی سرگوشیوں میں!
نرم ٹھنڈی ریت پر سلا کر!
میرے خیالوں کے، حوالوں کی بدکتی ناقہ کو وحشتوں سے نجات دلاتا ہے
میرے تڑپتے سسکتے دل کو!
اپنی آغوش میں لے کر ، اپنے ہاتھوں سے سہلاتا ہے
تو ہی خالق۔۔۔ تو ہی مالک۔۔۔!
تیری کائنات میں اسرار جبرائیل ؑ کے ثبوت موجود ہیں
نیاز الہام اور قلب نامہ بری کے!
چراغ نور کی روشنی میں مظہر خلیلؑ کے ثبوت موجود ہیں
تو مجھے بزم رقص سے۔۔۔!
کوہ قبیس کی طرف لسان شعور کے لہجے میں بلاتا ہے
مسافتوں کے مارے دل کو!
اپنی آغوش میں لے کر، اپنے ہاتھوں سے سہلاتا ہے
تیری وجہ سے
لوح و قلم کو بھی ۔۔۔اپنے ہونے کا یقین ہے
تو ہی ’’وھو علی کل شی ئٍ قدیر۔۔۔وھو علی بِکل شی ئٍ علیم‘‘ ہے
صبح و شام میرے ارادوں کو۔۔۔تو اپنی پہچان کرواتا ہے
مسافتوں کے مارے دل کو!
اپنی آغوش میں لے کر ۔۔۔اپنے ہاتھوں سے سہلاتا ہے
This research aims to investigate the association of gender dissimilarities and job satisfaction among employees working in public sector Universities. Structural equation modeling approach using Smart PLS is employed to test hypotheses on 410 samples of university officers. The findings reveal that the gender differences have positive relationship with employee job satisfaction. Moreover, there are various factors alike organizational commitment, working conditions which are not considered in this research. Furthermore, current research has stressed on the significance of HR practices in public sector universities to manage diversity. The research implications suggest that authorities relating to public sector universities private banking sector of Pakistan needs to pay attention on rewards and recognition activities as employees expect rewards according to their efforts.
Anomaly based Intrusion detection systems have proved their worth by detecting zero age intrusions but suffers from large number of false alarms mainly because of imprecise definitions of their normal profile or detection models. Building accurate and precise normal profiles or detection models for intrusion detection is a complex process. It is because it involves highly dynamic network behavior, concept drift phenomenon and evolving intrusion patterns. To accommodate these network dynamics in intrusion de- tection models, we require extensive training data-sets. These data sets must contain a uniform distribution of theoretically possible intrusion patterns and normal network traffic instances. Deviation in training data-set with real time network data and skewed class distribution in training data set will result in a biased detection model. Concept drift phenomenon, huge network data, highly imbalance traffic distribution, addition of new applications and abstract boundaries between normal and abnormal behavior has limited the accuracy of generalized detection models or shortened their detection models useful life. Due to these limitations and complexities in building long term intrusion de- tection models, it is proposed in this thesis that instead of building a generalized profile responsible for detecting all the intrusions it is more helpful if short-term profiles are used to detect an intrusion or even a phase of an intrusion active in certain time space. These short term profiles are evolved by changing cost functions according to changed anomaly conditions, current network traffic patterns and security policies. The evolved profiles remain valid for a short period of time in which network dynamics can be as- sumed as piece-wise linear. In this thesis an anomaly based Adaptive SEmi-supervised Evolutionary Security (ASEES) fuzzy framework is proposed. It is based on adaptive distributed and cooperative fuzzy agents which use evolved short-term profiles. These profiles are evolved for different objectives to detect specific intrusions. Evolved pro- files are switched and activated according to current network and anomaly conditions, network security policies and based on forecasted attacks. The ASEES fuzzy framework is tested under two different attacks; DoS attack and viireconnaissance attack i.e. port scan. The results show good detection times and high detection rate due to similarity of the training and testing data-set. The results also shows a performance increase in using short term profiles along with generalize normal profiles for denial of service attacks.