Search or add a thesis

Advanced Search (Beta)
Home > اولی الامر کا اسلامی تصور

اولی الامر کا اسلامی تصور

Thesis Info

Author

ریاض محبوب

Supervisor

شبیر احمد منصور ی

Program

MA

Institute

University of the Punjab

City

لاہور

Degree Starting Year

1987

Language

Urdu

Keywords

حاکمیت اور حکمران

Added

2023-02-16 17:15:59

Modified

2023-02-16 17:33:40

ARI ID

1676731154312

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

تشبیہات

اقبال کا شاعرانہ سفر، شاعرانہ انداز اور شاعرانہ مقاصد دوسروں سے مختلف تھے۔ اس لیے اقبال نے شاعرانہ محاسن کو بھی اپنے خاص مقاصد کے لیے استعمال کیا۔ اس طرح کلام اقبال میں صنائع بدائع کا ذکر بھی موجود ہے اور شعری محاسن کو اقبال نے جس طرح استعمال کہا ہے قاری پڑھ کر حیران رہ جاتا ہے۔ تشبیہ کے حوالہ سے پروفیسر عبدالحق کہتے ہیں:
”صنائع بدائع کاایک بڑا ذ خیرہ کلام میں موجود ہے۔ تشبیہات کی ندرت اور ان کی
ارزانی پر حیرت ہوتی ہے“ (10)
اقبال کے کلام میں تشبیہ کی بہت سی مثالیں دیکھی جاسکتی ہیں۔ اقبال نے انہیں اپنے خاص مقاصد کے لیے استعمال کیا ہے۔ صرف شاعرانہ لطف وکرم کے لیے با لذت کے لیے تشبیہ کا سہارا نہیں لیا ۔نظم ”ساقی نامہ“ کے یہ اشعار دیکھیے۔
یہ عالم ،یہ بت خانۂ شش جہات
اسی نے تراشا ہے یہ سومنات

یہ عالم ،یہ بت خانۂ چشم و گوش
جہاں زندگی ہے فقط خوردو نوش (11)
ان اشعار میں ”بت خانہ شش جہات“ اور” بت خانۂ چشم و گوش “جیسے الفاظ و تراکیب حکیمانہ اور فلسفیانہ خیالات کے حامل ہیں اور اقبال نے انہیں تشبیہ کے طور پر استعمال کیا ہے۔ اقبال کے اسلوب شعر میں اور بھی بہت سی تشبیہات استعمال ہوئی ہیں۔ ان کا تعلق عمرانیات ،سیاسیات اور تہذیب سے بھی ہے۔اقبال نے اپنی شاعری کا بڑا حصہ عالم انسانیت کے عمرانی اور سیاسی مسائل کی تشریح اور تعبیر کی نذر کر دیا۔ انہوں نے زندگی کی ان غیر دلکش اور کھردری حقیقتوں کو لباس حسن و زیبائی میں پیش کر کے شعری اسلوب کو ایک نئے آہنگ سے روشناس کیا۔
؂آزاد کی رگ سخت ہے مانند رگ سنگ
محکوم کی رگ نرم ہے مانند رگ تاک (12)
”رگِ سنگ“ اور ”رگِ تاک“ کی تشبیہ...

Endoscopic Versus Open Radial Artery Harvesting Used in Coronary Artery Bypass Grafting, Our Experience at Queen Alia Heart Institute Endoscopic versus open radial artery harvesting used in coronary artery

Coronary artery stenosis bypass by using radial artery is good techniques which have longer outcomes. In coronary artery bypass grafting (CABG) the radial artery has several advantages. The radial artery has a thick muscular wall which is more susceptibleto contraction from the competitive flow. As compared to the open harvesting technique endoscopic harvest of the radial artery has long lasting cosmetic results it also reduces the post-operative complications. The purpose of the study is to compare the two harvesting techniques and compare the short term and long term results related to intra-operative and post-operative outcomes Methods: This is retrospective study (In Queen Alia Heart Institute, Amman, Jordan) to compare endoscopic radial artery technique versus open technique by reviewing patients files through a period between June 2013 and June 2018. Total 50 patients of CABG surgery was selected they were divided into two groups. Group A includes endoscopic radial harvest (n= 10) and Group B includes open harvest (n=40). Data was collected on predesigned Performa. Data were entered and analyze through IBM SPSS 22.0 Results: There was insignificant dissimilarity between the pre-operative outcomes between groups. The Post-operative outcomes were almost same in both groups except hand numbness (P-value<0.005). The comparison of intraoperative outcomes like harvest time between both groups indicate that the mean harvest time in group A was shorter than group B (39.20 + 3.73 Vs 51.90 + 2.09, P-value=0.000). The operative time in group A was higher than the group B (306.0 + 11.6 Vs 278 + 4.25 p-value=0.00). The hospital stays in both groups were insignificantly different (p = 0.09) Conclusions: Endoscopic radial artery harvest is best suited technique for CABG surgery as it significantly decreases the harvest time as well as hospital stay. It is also proven that it is safer, less painful and better wound appearance technique with exceptional outcomes based on positive surgical experience.

Hadamard K-Fractional Integral and its Application

The Fractional Calculus has been attractive and hot topic among the researchers since 18th century, because of its extensive application in differential and integral equations and other disciplines of mathematics, physics and economics. The motivation of this thesis is to extend the fractional integrals and derivatives, particularly Hadamard fractional integral, and to establish basic properties of the extended fractional integral operators. The application of the extended operators involving the formation of the fractional integral inequalities and solutions of fractional integral equations is focussed in the work. The first chapter includes the introductory background of the fractional calculus. The appropriate literature pertaining to the fractional calculus, involving the theoretical and practical aspects of fractional differential and fractional integral operators has been reviewed. In the second chapter, we have listed symbols, notations and the basic results that are used throughout the dissertation. A number of inequalities involving the Holder’s inequality and AM-GM inequality have been presented. We have defined an extended form of Hadamard fractional integral and have called it Hadamard k-fractional integral. We have also discussed a number of properties of the extended integral operator. In the third chapter, we have established numerous fractional integral inequalities involving the inequalities of Chebyshev functional using the notion of synchronous functions, asynchronous functions, and the like. In the fourth chapter, we have presented some inequalities involving the rearrangement inequalities. On the basis of AM-GM, Holder and the rearrangement inequalities, we have established many fractional integral inequalities related to the extended operator. In the fifth chapter, we have introduced a number of extensions of the fractional integral operators involving the Hadamard type fractional operators. We have discussed the properties of the extended operators involving the semigroup property and commutative law. We have also considered the Mellin transforms and boundedness of some of the extended operators. In the sixth chapter, we have introduced extended fractional derivatives related to the extended fractional integral operators and have discussed their compositions. In the seventh chapter, we have presented some integral equations and have found their solutions using some of the extended fractional integral operators. We have also illustrated the use of some of the extended fractional calculus operators in finding solutions of fractional differential equations.