حفیظؔ جالندھری
ابوالاثر حفیظ جالندھری اردو شاعری کے مرصع کار ستون بنے رہے، اپنے آغاز شباب میں مناجات تہجد لکھی تو خواجہ حسن نظامی نے اس کو شائع کرکے لکھا کہ اگر میں دولت مند ہوتا تو اس مناجات کے ہر شعر کے معاوضہ میں ایک اشرفی نذر کرتا، کچھ دنوں وہ مزدوروں اور کسانوں کی دلسوزی کا بھی راگ الاپتے رہے، ہندو، مسلمانوں کو پریت کا گیت بھی سنایا، ’’ہندوستان ہمارا‘‘ میں تاریخ ہند کو نظم کرکے بچوں کے دلوں میں مطالعہ تاریخ کا ذوق پیدا کرنے کی بھی کوشش کی، مناظر فطرت کی مصوری بھی کی، جوانی کے جذبات کی ہنگامہ آرائی میں وہ نظم لکھی، جس کا عنوان ہے ’’ابھی تو میں جوان ہوں‘‘ اور یہ اب بھی بہت مقبول ہے، رومانی گیت لکھنے میں بھی مہارت رکھتے تھے، یکایک ان کا ذوق بدلا تو اس ملی شاعری کی طرف چل پڑے جس کی جوت ظفر علی خان اور اقبال نے جگائی تھی۔
راقم کو علی گڑھ مسلم یونیورسٹی میں ۱۹۳۴ء میں ان کا کلام ان کی زبانی سننے کا اتفاق ہوا تھا، وہاں طلبہ کی یونین میں مدعو تھے، جو ان کی آمد پر اوپر سے نیچے تک بھرگیا تھا، وہ اس وقت تک شاہنامہ اسلام کے شاعر کی حیثیت سے مشہور ہوچکے تھے، طلبہ ان سے اردو شاعری کے فردوسی کی حیثیت سے مل رہے تھے، انھوں نے شاہنامہ اسلام کا کچھ ٹکڑا اپنے خاص ترنم میں سنایا، تو ایسا محسوس ہوا کہ وہ واقعی ابوالاثر ہیں، شاہنامہ کی پہلی جلد ہی شائع ہوسکی، جس میں جنگ بدر تک کے حالات ہیں، اس زمانہ میں اعلان ہوا تھا کہ اس کی دوسری جلد میں غزوات نبویؐ کی تفصیل ہوگی، پھر تیسری جلد میں خلفائے راشدینؓ اور اسلامی فتوحات کی باری آئے گی، اردو شاعری کے اس فردوسی کو ایک محمود کی...
Imran Iqbal's name is prominent in Urdu fiction. He is from Bahawalpur but he is residing in the United States for employment. Imran Iqbal tried his hand at travelogues, fiction, novels and memoirs. He has made women and her issues the subject of his fictions. Imran Iqbal has presented a true picture of a woman who at every step faces various forms of male repressive behavior, outdated customs, husband and father-in-law atrocities, domestic violence and sexual harassment. Her fiction depicts women's psychological problems, the sexual appetites of landlords, capitalists, bureaucrats and top officials. Imran Iqbal has awakened Tanila consciousness through his pen.
The aim of this research is to investigate some contractions and establish the existence results of single and multivalued mappings in frame work of some abstract space. Banach (1922) presented a fixed point theorem, namely Banach contraction theorem, which states that, a contraction mapping has a unique fixed point in a complete metric space. This theorem is widely applicable in proving the existence of solutions of functional equations under certain conditions. This theorem is based upon the iterative process, so it can be easily implemented on computer. This theorem was a revolution in fixed point theory. Later on , several generalizations of this theorem have been obtained. Fixed point results are widely studied in the framework of topological, metric and ordered oriented spaces. It is interesting to study that a nonlinear functional equation T(x) = x (where T is some linear or nonlinear operator defined on metric or fuzzy metric space) has either a solution or possess no solution. If the nonlinear functional equation has any solution, then it is interesting to find some algorithms which lead to an appropriate solution, but if nonlinear functional equation has no solution, then to try and find some approximate solution. The approximation, optimization and fixed point theory incorporate the main theme of nonlinear analysis. The best approximation theory is applicable in variety of problems arising in nonlinear functional analysis. Banach (1922) fixed point theorem is vastly applicable in proving the existence of solutions of functional equations under certain conditions. Many authors generalized Banach contraction principle in various directions. To address the question, if a nonlinear functional equation has no solution, it is recommended to approximate the solution which solves the optimization problem such that d(x, T x) is minimum. Ky Fan’s (Fan (1969)) best approximation result has been used when some nonlinear functional equations have no solution. In this thesis, best proximity point results in non-Archimedean fuzzy metric space are proved and some optimal best proximity point results are also obtained. These results provides the existence of optimal approximate solutions to some equations which have no solution. Further, fuzzy optimal coincidence point results for different proximal contractions in the framework of complete non-Archimedean fuzzy metric space are obtained. These results also holds in fuzzy metric spaces when some mild assumptions are added in the domain of involved mappings. In the next part of thesis, best proximity point results in a complete non-Archimedean fuzzy metric space with ordered structure have been discussed. Further, a class of multivalued mappings is introduced which satisfies Suzuki type generalized contractive condition in the framework of fuzzy metric spaces and some fixed point results are obtained for such kind of mappings. In next part of this thesis, Suzuki type contraction conditions are further generalized as Suzuki type F−contraction fuzzy mapping in ordered metric spaces. As an application, a common fixed point result for hybrid pair of single and multivalued mappings, the existence and uniqueness of common bounded solution of functional equations arising in dynamic programming are obtained. The obtained results generalize and extend various results in the existing literature. In each chapter, some examples are provided, which shows the validity of the results along with couple of remarks about the comparison of obtained results with the existing ones in the literature.