تندرستی ہزار نعمت ہے
اللہ تعالیٰ نے بنی نوع انسان کی تخلیق فرمائی تو اس کو بے شمار نعمتوں سے سرفراز فرمایا۔ دیکھنے کے لیے آنکھیں، سننے کے لیے کان، بولنے کے لیے زبان، چکھنے کے لیے قوت ذائقہ، سونگھنے کے لیے قوت، چلنے کے لیے قوت، سوچنے کے لیے قوت، غور وفکر کے لیے قوت یعنی انسان کوقوائے جسمانی کی صورت میں انعاماتِ ربانی وافر مقدار میں میسر آئے۔
قرآنِ پاک میں ارشادِ باری تعالیٰ ہے کہ اگر اللہ تعالیٰ کی نعمتوں کا شمار کرنا چاہو تو تم ان کو گنتی میں نہیں لا سکتے ہو، ان بے شمار نعمتوں کا درود بنی نوع انسان کے لیے ہوا ہے اور انسان وہ ہے جو جسم اور روح کا مرکب ہے اگر انسان صحت مند ہے تو یہ جملہ انعامات ِربانی اس کے لیے نعمت غیر مترقبہ ہیں اور اگر مرد بیمار ہے تو وہ ہر نعمت سے بیگانہ ہے، ہر نعمت اس کے لیے غیر مفید ہے، ہر نعمت اس کے لیے نعمت نہیں بلکہ زحمت ہے، ہر نعمت کا وجود اس کے لیے غیرمحمود ہے۔
انسان گلستانِ سرسبز میں گلہائے رنگارنگ کے حسین و جمیل مناظر سے متمتع ہوسکتا ہے لیکن چشمائے انسانی میں بینائی شرط ہے، انسان کوئل کی مسحور کن آواز سے، قاری قرآن کی تلاوت سے، خطیب ممبر رسول صلی اللہ علیہ و آلہٖ وسلم کی خوش الحانی سے، واعظ شیر یںلسان کی شعلہ بیانی سے کما حقہٗ فائدہ اٹھا سکتا ہے بشرطیکہ قوت سماعت جوبن پر ہو، اعضائے جسمانی کی سا لمیت تکمیل انسانیت کے لیے اہم کردار ادا کرتی ہے۔
صحت مند انسان معاشرے کا اہم رکن ہوتا ہے۔ گھر کے لیے ، خاندان کے لیے اس کا وجودکسی نعمت سے کم نہیں ہوتا، اس کی نشست و برخاست معیاری ہوتی ہے، وہ حسن وزیبائش کا مرقع ہوتا ہے، وہ...
This research is based on the correction of a common mistake that is used in many of the books and scientific field. It has been spread among many of researchers these days that the Prophet Mohammad’s (SAW) Companions stripped the Holy Qur’an off the dots and diacritics to cover the aspects of the Holy Qur’anic readings. In the introduction, the researcher talks about the importance of the topic and the reason why it has been chosen. In the first chapter covers the meaning of the terms that the research is based on such as: dots, inserting dots, diacritics and stripping. The second chapter, the researcher mentions the implications of stripping and clarifies its meaning and its effect on the understanding of the researchers at the present time. In the third chapter, the researcher talks about the history of dots, where he mentions and analyzes a number of old inscriptions that are considered as the basis from which Arabic language was developed. In conclusion, the researcher refers to the most important findings and recommendations.
This thesis presents the application of computational intelligence techniques to signal processing of static, time-series and imagery bio-signal data. In the process two very important diseases were diagnosed. These diseases are breast cancer and cardiac arrhythmia. Out of the di erent detection techniques for breast cancer the ones that were used in this research are the Fine Needle Aspiration (FNA) and the mammography. Thene needle aspiration (FNA) procedure consists of excising a small sample of suspected lesion from the breast using ane needle. The sample is studied under a microscope for the cell sizes and shapes. From the collective characteristics of these features the pathologist decides whether the cell is malignant(cancerous) or benign(noncancerous). Data for the FNA technique was obtained from the Diagnostic Wisconsin Breast Cancer (DWBC) database, an example of static data. The database contains many malignant and benign sample feature value and their results. To assist physicians in diagnosis, a computational intelligence detection approach was devised. In this method experiments were performed using the computational intelligence network of Cartesian Genetic Programming evolved Arti cial Neural Network (CGPANN). Feature values of the samples were normalized and a part of them used to train a CGPANN. The trained network was then tested with rest of the samples. Experiments conducted with the FNA dataset resulted in more than 99% accuracy. The second diagnostic method, the mammography, is also used widely for breast cancer screening. It consists of taking a high resolution x-ray image of the breast that is suspected of cancer. The two main abnormalities in a breast can be masses and microcalci cations. In order to assist radiologists in diagnosis a method was developed, that can classify a mass or microcalci cation appearing in a mammogram to be either benign or malignant. The data for this work was obtained from the Digital Database for Screening Mammography (DDSM), an example for imagery data. The method consists of calculating the Haralick''s statistical parameters of the suspected lesion. A CGPANN network was trained with large number of these parameters, extracted from mammograms found in the database. The trained network classi ed both masses and microcalci cations with accuracy=90.58%, sensitivity=85.32% and speci city=95.84%. In the case of cardiac arrhythmia the ECG signals were obtained from MIT-BIH database, an example of time-series data. For automatic detection of Cardiac Arrhythmia an algorithm was developed. This algorithm applies digital signal processing and logical operations to the time domain Electro-Cardiogram (ECG) signal and hence detects the ducial points of an ECG complex. From theducial points, the lengths and slopes of a number of segments; and amplitudes of peaks are determined. These parameter values are applied to CGPANN to classify the beats. To make the system capable of classifying unknown ECG it was trained with the parameters extracted from ECG signals available at MIT-BIH database. All these parameters bear important information about the di erent arrhythmia. Three di erent experimental setups were designed, each setup improving the performance of the previous one. In the third setup, with the inclusion of digital logic unit, seven arrhythmia types were detected, with four types having accuracy value of 94% and above. In all experiments, the CGPANN wasrst trained with parameters extracted from a part of sample ECG, together with their arrhythmia types; and then tested with another part of the data. This algorithm can be implemented in real time on beat to beat basis. A future enhancement to this system is to implement the algorithm in programmable hardware and subsequently used in systems like Implantable Cardioverter De brilators (ICD) that need correct detection of life threatening beats to apply an electrical impulse to the heart at the right moment.