ڈاکٹر اعجاز حسین ؍ ڈاکٹر مسیح الزماں
گزشتہ مہینہ میں ڈاکٹر اعجاز حسین سابق صدر شعبہ اردو الہ آباد یونیورسٹی کا انتقال حرکت قلب بند ہوجانے سے مظفرپور میں ہوگیا، جہاں وہ ممتحن بن کر گئے ہوئے تھے، ان کی میت الہ آباد لائی گئی، اپنی ملازمت سے سبکدوش ہونے کے بعد بھی لکھنے پڑھنے کا شغل جاری رکھا تھا، اہم اور مفید کتابوں کے مصنف تھے، جن میں مختصر تاریخ ادب اردو اور نئے ادبی رجحانات وغیرہ زیادہ مقبول ہوئیں، اپنے شاگردوں میں بہت مقبول رہے، ان کی وفات سے اردو ادب ایک بہت ہی لائق مصنف اور خدمت گزار سے محروم ہوگیا، ان سے کچھ ہی روز پہلے ڈاکٹر مسیح الزماں ریڈیو شعبہ اردو الہ آباد یونیورسٹی کی بھی وفات اچانک ہوگئی، اردو کی مرثیہ نگاری ان کا خاص موضوع تھا، ان کی عمر وفا کرتی تو اس صنف میں ان کا ادبی کارنامہ بڑا قابل قدر ہوتا، وہ پروفیسر مسعود حسن رضوی سابق صدر شعبہ اردو لکھنؤ یونیورسٹی کے داماد تھے، جن کے لئے اس کبرسنی میں یہ سانحہ بڑا ہی جانکاہ ہوگا۔
دعا ہے کہ خدا اردو ادب کے ان دونوں خدمت گزاروں کو غریق رحمت کرے، آمین ثم آمین۔ (صباح الدین عبدالرحمن، مارچ ۱۹۷۵ء)
WRKY transcription factors belong to one of the biggest superfamilies of proteins in higher plants. WRKY proteins participate in plant growth for instance, gamete formation, seed germination and are also responsive to different types of environmental cues including abiotic and biotic stresses. The DNA-binding site of WRKY factors is well established which interact with W‐box (TGACC(A/T)) located in the promoter of their target genes and promote the activation or repression of the expression of those genes to control their response against stresses but it remains difficult to establish thefunctions of every family members to control particular transcriptional programs during development or in response to environmental signals. This review summarizes the recent progress madein unraveling the various WRKY protein-controlled functions under different environmental stresses.
The unavailability of reference images in real world problems makes blind image quality assessment (BIQA) a challenging task. The ability of BIQA techniques to assess the image qualityisdirectlydependentonthequalityoffeaturesextracted. ManyBIQAtechniquesare proposed in literature that follow a two-step approach that include extraction of features in different domains and assessment of image quality with the use of extracted BIQA features. TheperformanceofBIQAtechniquescanbedegradedwhenredundantorirrelevantfeatures are present in the image. Therefore, irrelevant and redundant features can be removed using feature selection algorithms that aid in increasing the correlation between predicted quality score and mean observer score (MOS) and lowering the root mean squared error (RMSE), which improves the performance of BIQA techniques. In this thesis, role of feature selection for BIQA has been explored and analyzed. The objectiveoffeatureselectionistoselectfeaturesthatcanhelpinimprovingtheperformance of BIQA techniques. The thesis starts by providing an introduction to image quality assessment followed by a survey of existing state-of-the-art BIQA techniques. The knowledge of existing BIQA techniques is utilized for optimum feature selection, which has not been explored for existing BIQA techniques to the best of our knowledge. In contrast to existing techniques, a three-step framework is presented in this thesis. Existing BIQA techniques are used for feature extraction in the first step. Existing general purpose feature selection algorithms are utilized to reduce the length of feature vector in the second step. The image qualityscoreispredictedutilizingtheselectedfeaturesinthethirdstep. Threeapproachesto feature selection have been considered. Firstly, feature selection is performed using existing feature selection algorithms. During the analysis of features, belonging to various BIQA techniques, it was observed that each distortion type exhibits different characteristics. Each individual distortion type affects each BIQA feature in a distinct manner e.g., Gaussian blur affectsedgeinformationintheimagewhereas,JPEGcompressiondistortiontypeintroduces blockiness in the image. Therefore, using same set of features for all distortion types may not be the optimal approach. Hence, distortion specific feature selection is proposed, which selects different features are selected for each distortion type. Impact of general purpose feature selection algorithms on BIQA techniques has shown promising results. However, thesefeatureselectionalgorithmscanselectirrelevantfeaturesanddiscardrelevantfeatures. Therefore, the performance of fifteen new feature selection algorithms, which are specificallydesignedforBIQA,isexplored. Theproposedfeatureselectionalgorithmsareapplied on the extracted features of existing BIQA techniques and rely on SROCC, LCC, Kendall correlation constant (KCC) and RMSE parameters. Feature selection algorithms based on SROCC and its combination with LCC, KCC and RMSE perform better in comparison to other proposed algorithms. A new BIQA technique based on natural scene statistics properties of the bag-of-features representation and feature selection algorithms is proposed in this thesis. The proposed bag-of-features technique utilizes Harris affine detector and scale invariantfeaturetransformtocomputefeatures, whichareclusteredusingthek-meansclusteringalgorithmtoformthecodebookvocabulary. Thisconstructedcodebookisusedwitha pre-trained support vector regression model to assess the quality of the image. Furthermore, the performance of existing feature selection algorithms is explored on the proposed BIQA technique. Itisobserved,thatfeatureselectionhelpsinimprovingtheperformanceofexistingBIQA techniques,byimprovingtheSROCC,LCC,KCCandRMSEincomparisontousingallthe features for a particular BIQA technique.