Search or add a thesis

Advanced Search (Beta)
Home > تفسیر جواہر القرآن اور تفسیر محمود کا تقابلی مطالعہ: سورة البقرة کی روشنی میں

تفسیر جواہر القرآن اور تفسیر محمود کا تقابلی مطالعہ: سورة البقرة کی روشنی میں

Thesis Info

Author

امان اللہ

Supervisor

فضل الٰہی

Program

Mphil

Institute

Qurtuba University of Science and Information Technology

City

ڈیرہ اسماعیل خان

Language

Urdu

Keywords

تعارف تفاسیر , جواہر القرآن , تعارف تفاسیر , محمود

Added

2023-02-16 17:15:59

Modified

2023-02-19 12:20:59

ARI ID

1676732096869

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

گوشِ عالم میں پڑی ہے ورفعنا کی صدا


گوشِ عالم میں پڑی ہے وَرَفَعنا کی صدا
ہر زمانے نے سنی ہے وَرَفَعنا کی صدا

گلشنِ جاں میں رچی ہے ’’لَکَ ذِکرَک‘‘ کی مہک
دل کی دھڑکن میں بسی ہے وَرَفَعنا کی صدا

مالکِ خیر نے کی خیر کی کثرت اُنؐ پر
اہلِ شر سے نہ دبی ہے وَرَفَعنا کی صدا

عقل والوں نے جسے ذکرِ خدا سمجھا ہے
عشق والوں میں وہی ہے وَرَفَعنا کی صدا

مدحتِ شاہِ اُممؐ زینتِ قرطاس و قلم
صوت کا حسن بنی ہے وَرَفَعنا کی صدا

سننے والوں نے سنی آیۂ نَشرَح لیکن
لبِ قاری پہ سجی ہے وَرَفَعنا کی صدا

اس پہ قرآن کی آیات ہیں شاہد عرفاںؔ
ربِّ کونین نے دی ہے وَرَفَعنا کی صدا

Work-family conflict and fear of COVID-19 and its relationship with the physical and mental health of Pakistani working women

Work-family conflict is a conflict between societal expectations and the interaction of interrelated work and family domains. It is essential to understand the impact of COVID-19 on working women's physical and mental health in Pakistan to advise better health policy. This research aims to determine work-family conflict’s impact on working women’s physical and mental health. Through non-probability sampling, 100 working women were sampled online across different cities of Pakistan. The participants were selected from different working fields. Only women above the age of 20 years were eligible for participation in this study. The study found that work-family conflict positively correlates with the fear of COVID19, blood pressure, depression, and anxiety symptoms. Psychologists, counselors, and general physicians for primary and preventive care in Pakistan need to work towards counselling and supporting the health needs of working women to prevent biopsychosocial problems related to work-family conflict and fear of COVID-19. Keywords: anxiety, blood pressure, depression, fear of covid-19, work-family conflict.

On the Metric Dimension and Minimal Doubly Resolving Sets of Families of Graphs

Let G = (V (G);E(G)) be a connected graph. The distance between two vertices u; v 2 V (G) is the length of shortest path between them and is denoted by d(u; v). A vertex x is said to resolve a pair of vertices u; v 2 V (G) if d(u; x) 6= d(v; x). For an ordered subset, B = fb1; b2; : : : ; bng of vertices of G, the n-tuple r(vjB) = (d(v; b1); d(v; b2); : : : ; d(v; bn)) is called representation of vertex v with respect to B or vector of metric coordinates of v with respect to B. The set B is called a resolving set of G if r(ujB) 6= r(vjB) for every pair of vertices u; v 2 V (G), i.e., the representation of each vertex with respect to B is unique. The resolving set with minimum cardinality is called metric basis of G. This minimum cardinality is called metric dimension and is denoted by _(G). Notice that the i-th coordinate in r(vjB) is 0 if and only if v = bi. Thus in order to show that B is a resolving set of G, it su_ces to verify that r(ujB) 6= r(vjB) for every pair of distinct vertices u; v 2 V (G) n B. Let G be a graph of order at least 2. Two vertices x; y 2 V (G) are said to doubly resolve the vertices u; v of G if d(u; x) ? d(u; y) 6= d(v; x) ? d(v; y): A subset D _ V (G) is called a doubly resolving set of G if every two distinct vertices of G are doubly resolved by some two vertices in D, i.e., all coordinates of the vector r(ujD)?r(vjD) can not be same for every pair of distinct vertices u; v 2 V (G). The minimal doubly resolving set problem is to _nd a doubly resolving set of G with the minimum cardinality. The cardinality of minimal doubly resolving set of G is denoted by(G). We have _(G) _(G) always. Therefore these sets can contribute in finding upper bounds on the metric dimension of graphs. In this thesis, we have investigated the minimal doubly resolving set problem for necklace graph, circulant graph, antiprism graph and M obius ladders. Also, in last part of thesis, the metric dimension problem has been investigated for kayak paddle graph and cycles with chord.