کاش احکام حضورؐ آپؐ کے صادر ہوتے
اشک آنکھوں میں لیے ہم بھی تو حاضر ہوتے
گنبدِ خضرا کو آنکھوں میں بسائے ہم بھی
راہِ طیبہ کے جنوں خیز مسافر ہوتے
تشنگی رُوح و دل و چشم کی بجھتی رہتی
بس مضافاتِ مدینہ کے مناظر ہوتے
ہم پہنچ جاتے مدینے کی فضا میں اکثر
خوش نصیب اتنے کہاں ہم تھے کہ طائر ہوتے
آپؐ اُن کو بھی تو سینے سے لگا لیتے تھے
آپؐ کے سامنے آنے سے جو قاصر ہوتے
اپنا ہر شعر کسی نعت میں ڈھلتا عابدؔ
کاش اِ س پائے کے ، اِس شان کے شاعر ہوتے
Tafarrud (Strangeness) of a Hadith means reporting by only a single narrator at some stage of the Isnad. This is not necessary that any Tafarrud (Strangeness) of a Hadith should be weak (Da’if), because the narrator of such Hadith may make mistake in reporting and may be right. The authenticity of such Hadith rather depends on other factors such as: The reliability of the narrator of Strange Hadith. The earlier stage of the Isnad where Tafarrud (Strangeness) is founded. Close relation of the narrator with the teacher (sheikh). Acceptance of Strange Hadith by renowned authorities in Hadeeth. Another narrator authenticating the first narrator’s account of the strange hadith. Therefore Tafarrud (Strangeness) of a Hadith should be studied in the light of these factors that determines acceptability. This paper studies Tafarrud (Strangeness) of a Hadith in the light of these factors.
The main result of this thesis is a classification of all homogeneous spaces G/H admitting a G-invariant G2 -structure, assuming that G is a connected compact Lie group and G acts effectively on G/H. They include a subclass of all homogeneous ̃ spaces G/H with a G-invariant G2 -structure, where G is a compact Lie group. There are many new examples with nontrivial fundamental group. A formula computing the ̃ dimension of the space of G-invariant structures (resp. of G-invariant G2 -structures) on G/H is given. We study a subclass of homogeneous spaces of high rigidity and low rigidity and show that they admit families of invariant co-closed G2 -structures (resp. ̃ ̃ G2 -structures). Some new interesting examples of G2 -structures on these spaces are ̃ found. We also present a scheme of classification of G2 -structures using their intrinsic torsion.