Search or add a thesis

Advanced Search (Beta)
Home > الواقدی کی کتاب المغازی کی روایات کا تقابلی اور نا قدانہ جائزہ

الواقدی کی کتاب المغازی کی روایات کا تقابلی اور نا قدانہ جائزہ

Thesis Info

Author

جمعہ خان

Supervisor

قبلہ ایاز

Program

Mphil

Institute

University of Peshawar

City

پشاور

Degree Starting Year

2001

Language

Urdu

Keywords

دیگرائمہ و محدثینِ کرام

Added

2023-02-16 17:15:59

Modified

2023-02-19 12:20:59

ARI ID

1676732151808

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

منان لطیف۔۔۔ نئی نظم کا ہم مزاج

منان لطیفؔ۔۔۔ نئی نظم کا ہم مزاج

                نثری نظم اپنے تشکیلی دور سے نکل آئی ہے اور اب ایک زرخیز روایت کی مالک ہے ۔اس روایت میں فکر و خیال اور شاعرانہ اسلوب کے مظہر کئی تخلیق کار نثری نظم کے معمار ہیں اور انہی معتبر نثری نظم نگاروں کا فیض ہے کہ اکیسویں صدی میں نثری نظم میں جدید حسیات کی عکاسی ملتی ہے اور اب اسے ایک سنجیدہ اظہاریے کی سند مل چکی ہے ۔نثری نظم تخلیقی اور شعری اسلوب میں منفرد اور تازہ خیال کی شاعری ہے۔انہی صفات کی بنا پر یہ نثر کے مزاج سے مختلف ہونے پر اصرار کرتی ہے ۔یہ انفراد نثری نظم کا جواز بھی ہے ۔اسی لیے غزل اور موزوں نظم میں پہچان بنانے والے شعرا بھی نظم کو اپنا چکے ہیں ۔نثری نظم کی روایت کے لیے خوش آئند امر یہ ہے کہ نئے تخلیق کار بھی اس صنف کی روایت سے وابستہ ہو رہے ہیں ۔جن کو یہ شعور ہے کہ شاعری کے لیے وزن نہیں بلکہ شعریت شرط ہے ۔منان لطیفؔ بھی ان تازہ دم ،جواں سال و جواں فکر شعرا کی صف میں شامل ہیں جو نثری نظم کے ہم مزاج تخلیق کار ہیں اور اس نازک صنف کے تقاضوں کا ادراک رکھتے ہیں ۔ان کا تخلیقی وفور نثری نظم کے اسلوب کے سانچے میں اپنی حسیات کو شاعرانہ لہجے میں اظہارنے کی طلسم کاری سے منور ہے ۔ان کی نظمیں شعری بصیرت سے لے کر شعری اسلوب کی تشکیل کے رویوں کی عمدہ مثالیں ہیں ۔اس لیے ان نظموں کی قرأ ت کے دوران میں قاری کی ذہنی کیفیت احساس کی نئی بستیوں سے آشنا ہوتی ہے ۔یہ وہ ہنر مندی جو نثری نظم کا جواز ہے ۔اس لیے مجھے یقین ہے کہ مذکورہ اوصاف کی اساس پر منان...

متابعتِ رسولﷺ (تکمیلِ ایمان) کے سات درجے: مکتوبات امام ربانی مجدد الفِ ثانی کی روشنی میں

The digit seven has great importance in our life. Seven rounds of  Holy Kabah, seven heavens, seven layers of earth, seven levels of  hell, seven recitation of Holy Quran, seven interior and exterior (meanings) of holy Quran, seven stages of human life, etc. Hazrat Mujadid Alf Sani mentioned the seven degrees and their secrets of the obedience of the Holy Prophet: Say: "if you do love (obey) Allah, then follow me, Allah will (love) save you". Actually the perfect following of the Holy Prophet is the source of the completion of faith. As we adopt the following of the Holy Prophet, so and so our faith will reach to the perfection. In this article, the introduction of seven degrees of the following of the Holy Prophet and their secrets are described, in the light of 54th writing in book II. So books so that every Muslim after seeing his faith, could be able to complete the degrees of the perfection of faith and could get the nearness of God.

Harmonically S, M -Convex Functions and Related Inequalities

The theory developed about convex functions, arising from intuitive geometrical observations, may be readily applied to topics in real analysis and economics.Convexity is a simple and natural notion which can be traced back to Archimedes (circa 250 B.C.), in connection with his famous estimate of the value of π (using inscribed and circumscribed regular polygons). He noticed the important fact that the perimeter of a convex figure is smaller than the perimeter of any other convex figure surrounding it. In modern era, there occurs a rapid development in the theory of convex functions. There are sereval reasons behind it: firstly, many areas in modern analysis directly or indirectly involve the applications of convex functions; secondly, convex functions are closely related to the theory of inequalities and many important inequalities are consequences of the applications of convex functions (see [64, 47]). Inequalities play a important role in almost all fields of mathematics. Several applications of inequalities are found in various area of sciences such as, physical, natural, engineering sciences. In numerical analysis, inequalities play a main role in error estimates of different important integrals whom analytic solutions could not be found. In recent years, a number of authors have considered extensions/generalizations of convex functions in various aspects and also tried to build several relations like HemiteHadamard’s inequalities. We introduce different types of convexities and drive more general Hermite-Hadamard’s inequalities. Further, we derive Ostrowski, Hermite-Hadamard and Simpson, Fejer type inequalities. Also, we discuss applications of these classes such that we can estimate the integrals like Rab x ex n dx; Rab sin xnxdx for n ≥ 1 and a, b ∈ (0, ∞) etc without using numerical analysis. In first chapter, we give information about convex functions, Log-convex functions, Quasi-convex functions, (s, m)-convex functions in second sense and Preinvex functions. In second chapter, we consider the class of harmonically convex functions and investigate some relations between harmonically convex and classical convex functions. We define class of harmonically (s, m)-convex functions which unify the different harmonic convexities and establish Ostrowski, Hemite-Hadamard and Simpson, and Fejer type inequalities for this class of functions. In third chapter, we define the classes of the harmonically p-convex functions which is a generalization of convex functions and harmonically convex functions, and harmonically p-quasiconvex functions, and harmonically logarithmic p-convex functions. Further, we investigate relationship between harmonically p-convex, p-convex and classical convex functions. Also, we give a characterization about the relation between harmonically p-convex and harmonically convex functions. Finally, we establish Hermite-Hadamard type inequalities for harmonically p-convex functions, and inequalities for the product of harmonically p-convex functions, and inequalities for harmonically logarithmic p-convex functions. In fourth chapter, we define the class of p-preinvex functions which is generalization of preinvex and harmonically preinvex functions. We also define the notion of p-prequasiinvex and logarithmic p-preinvex functions. Moreovere, we establish Hermite-Hadamard type inequalities when the power of the absolute value of the derivative of the integrand is p-preinvex and we give results for product of two ppreinvex, and logarithmic p-preinvex functions, and Ostrowski’s type for the class of p-preinvex functions. In fifth chapter, we define harmonically (p, h, m)-preinvex functions which is generalization of harmonically preinvex functions such that preinvex and harmonically p-convex functions are its special cases. Next, we introduce the concept of harmonically logarithmic p-preinvex and harmonically p-quasipreinvex functions. Finally, we establish important and interesting results related to these classes of functions.