Search or add a thesis

Advanced Search (Beta)
Home > احکام السرقہ: امام سرخسی کے مباحث و منہج کا خصوصی مطالعہ

احکام السرقہ: امام سرخسی کے مباحث و منہج کا خصوصی مطالعہ

Thesis Info

Author

محمد طاہر فیاض

Supervisor

محمد امجد

Program

Mphil

Institute

Bahauddin Zakariya University

City

ملتان

Degree Starting Year

2017

Language

Urdu

Keywords

شراب و قمار اور چوری

Added

2023-02-16 17:15:59

Modified

2023-02-19 12:20:59

ARI ID

1676732336760

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

میرا ملک پاکستان

میرا ملک پاکستان
نحمدہ ونصلی علی رسولہ الکریم امّا بعد فاعوذ بااللہ من الشیطن الرجیم
بسم اللہ الرحمن الرحیم
معزز اسا تذہ کرام اور میرے ہم مکتب ساتھیو!
آج مجھے جس موضوع پر اظہار خیال کرنا ہے وہ ہے:’’میرا ملک پاکستان‘‘
صدرِذی وقار!
جہاں تک میرے ملک کا تعلق ہے تو یہ مجھے جان سے بھی زیادہ عزیز ہے، اس کے کھیت وکھلیان عزیز ہیں، اس کے کوہ ودمن عزیز ہیں، اس کے گلستان و چمن عزیز ہیں ، میرا ملک پاکستان ایک ایسی سرزمین ہے کہ جس پر جملہ عالم اسلام ناز کرتا ہے۔ جس کا وجود ہرمسلم کے لیے ناگزیر ہے۔ جس کی بقاء وسا لمیت پرکلمہ گو کا مقصد حیات ہے۔
محترم سامعین !
پاکستان کا قیام ایک نعمت غیر مترقبہ ہے، ہم نے یہ آسانی سے حاصل نہیں کیا، اس میں لاکھوں شہیدوں کا لہو شامل ہے، اس شجر ثمر دار کی بنیادوں میں کئی یتیموں کی یتیمی بھی شامل ہے۔ کئی بیواؤں کے اشکبار آنسوشامل ہیں ، کئی نئی نویلی دلہنوں کی شبہائے عروس شامل ہیں۔ کئی نوجوانوں کی اُٹھتی ہوئی جوانیاں شامل ہیں۔
محترم صدر!
پاکستان ہم نے اس لیے حاصل کیا تھا کہ ہم اپنی عبادت آزادانہ کریں گے، ہم آزادی کی نعمت سے مالا مال ہوں گے۔ ہمیں رکوع وسجود میں آزادی ہوگی ، ہمیںصدقہ و خیرات کرنے میں آزادی ہوگی ہمیں تعلیم کے حصول میں آزادی ہوگی، ہمیں خدمت خلق میں آزادی ہوگی ،ہمیں تبلیغ دین میں آزادی ہوگی، ہمیں تفہیم قرآن میں آزادی ہوگی، ہم جملہ امورِ حیات سرانجام دینے میں آزاد ہوں گے۔
صدرِ ذی وقار!
ہم قائد اعظم محمدعلی جناح اور سلف صالحین کی کوششوں سے آزاد تو ہو گئے لیکن ہم نے آزادی کا مطلب غلط سمجھ لیا، ہم مادر پدر آزاد ہو گئے ، ہم اقرباء پروری...

من تأثيرات العلامة إقبال في نجيب الكيلاني من خلال كتابه إقبال الشاعر الثائر

Najeeb Al-Kailani is a famous Egyptian Islamic writer. He was immensely impressed by Iqbal’s philosophy. He was absorbed in the study of Islamic literature in the early days of his life and dared to write many articles in various magazines, touching various aspects of Iqbal’s poetry. Al-Kailani then by maintaining his interest in Iqbal’s poetry, was compelled to write the book entitled إقبال الشاعر الثائر"”, (Iqbal, the Revolutionary poet). He was awarded with prize by ministry of education and training, and in 1977 President of Pakistan General Muhammad Ziaul haq awarded him gold medal. This article highlighted the impact of Allama Muhammad Iqbal in al-Kailani’ book and analyzed its text by refereeing it to the original poetry of Allama Muhammad Iqbal. This article concluded that Kailani’s book is finest and comprehensive book, which demonstrated the life and philosophy of Allama Muhammad Iqbal.

Segmentationandclassificationofbraintumormrimages Throughadvancemachinelearning Methods

The main objective of this research work is to develop, test and evaluate an identification support system that is able to provide accurate, fast and reliable diagnosis of brain tumor in MRimages. Keeping in consideration that human decision making skills are mainly dependent on experience and prone to error due to fatigue, Artificial Intelligence (AI) can be utilized as an effective aid in the field of medicinal sciences for tumor diagnosis through image recognition. Therefore, this thesis strives to develop such an intelligent system that can be used for the segmentation and classification of infiltrative brain tumors known as Low Grade and High Grade in MR images. In order to tackle the complex task of brain tumor segmentation in MR images, we present an adaptive algorithm that formulates an energy based stochastic segmentation with a level set methodology. This hybrid technique efficiently matches, segments and determines the anatomic structures within an image by using global and local energies. After evaluating the algorithm on low and high grade images, it was noted that there was an improvement in the resultant similarity between segmented and truth (original) images. Once effective segmentation was achieved we could then work on the next step of tumor identification; classification. In the second part of the process we proposed two classification frameworks, machine learning and deep learning. In machine learning, we first extracted 22 probabilistic features using gray level co-occurrence matrix methodology that served as input features for the classifiers. Then we showed the improvement in classification (through machine learning) accuracy by providing two methodologies in which the first one involved v classification directly after feature extraction whereas in the second we reduced the extracted features using principal component analysis and then applied those reduced features to several classifiers. The second framework that we proposed was the brain tumor classification of segmented MR images through optimized CNN-Deep belief learning model. It scales to various image sizes by distributing the hyper-parameters and weights among all locations in an image. The presented model is translation invariant and is compatible with top-down and bottom-up probabilistic inference. This hierarchical classifier was optimized by regularization, that mitigates the effect of overfitting for small datasets, stochastic gradient decent, which works efficiently by utilizing only a small set of samples from a whole training set to infer the gradient and fine tuning of constraints. A comparative analysis, based on accuracy, error/loss and computation time, was carried out between the pre-processed non-segmented and segmented MR images after classification was completed. The results showed that the accuracy of proposed optimized CNN-deep belief learning classifier with segmented MR images was higher while the loss and execution time were reduced. These methodologies transcend the confines of MR image processing due to their effective modularity allowing them to be suitable for other medical imaging and computer vision tasks.