ریشم بننا کھیل نہیں
ناطق کی نظموں کے مجموعہ کو سانجھ پبلی کیشنز لاہور نے 2019ء میں ’’ریشم بننا کھیل نہیں‘‘ کے نام سے شائع کیا۔تینوں کتابوں کے دیباچے بھی اس مجموعہ میں شامل ہیں۔یہ مجموعہ قارئین کیلئے ایک نادر تحفہ ثابت ہوا،الگ الگ مجموعوں کو پڑھنے کی بجائے سارا متن ایک ہی مجموعہ میں قارئین کی دلچسپی کو دوبالا کرنے کیلئے شائع کیا گیا۔یقیناًیہ ایک عمد ہ کاوش ہے۔فہمیدہ ریاض لکھتی ہیں کہ:
’’علی اکبر جواں سال ہے اور ایوان ادب میں دلربا شان سے داخل ہوا ہے۔اس کا بے خوف مشاہدہ ادب کیلئے مسرت کی نوید ہے اس کی شاعری میں بھڑکتے ہوئے شعلے چہاراطراف کو خاکستر کرتے نظر آتے ہیں۔‘‘(7)
ریشم بننا کھل نہیںایسا معلوم ہوتا ہے کہ انہوں نے اپنی ایک ایک نظم سے یہ ریشم بنا ہے۔تینو ں کتب کو ایک ہی جلدمیںلے آنا کوئی آسان کام نہیں تھا۔ قاری کے لئے مسرت کی گھڑی ہے کہ اسے ناطق کی شاعری کو ایک ساتھ پڑھنے کا موقع ملا۔ یقیناً یہ ایک عمدہ کاوش ہے۔
Aim: To evaluate the immediate effects of various activity levels on knee joint position sense.
Methodology: Sixty males aged between 19 and 24 years, without any complains of discomfort or pain in the knee joint were selected from Bakhtawar Amin Hospital, Multan using convenience sampling, between April 2nd, 2019 to July 28th, 2019. Group A participants walked on the treadmill at a speed of 4 km/h for 5 min (n = 20). Group B participants ran on a treadmill at 6.4 km per hour for five minutes (n = 20). Group C participants sprinted on a treadmill at 8.5 km per hour for five minutes (n = 20).
Results: Mean age of the subjects was 21.18±1.77. In the moderate physical activity group, the difference in the means in passive reproduction of the knee flexion angle of 20o observed was 1.40±2.39, (p-value 0.013), and similarly in intense physical activity was 1.75±3.58 (p-value 0.020). For the knee flexion angle of 40o, the difference in the means for moderate was 1.35±1.84 (p=0.002), and for the intense activity was 2.35±2.27 (p=0.012). However, in the group with mild physical activity, the difference in the means was statistically insignificant.
Conclusion: The study indicated that physical activities of moderate level and intense level decrease the joint position sense appreciation at the knee joint in less active healthy individuals.
One of the major consequences of mathematical modeling is nonlinear partial differential equations (NLPDEs). They can be used to analyze and predict the characteristics of many nonlinear real-life phenomena, such as acoustic waves, heat transfer, wave propagation, plasma fluid flow, and diffusion processes, etc. Exact solutions of these NLPDEs gives us the means required to simulate and predict the relevant nonlinear real-life phenomena. Recently, a class of exact solutions (known as soliton solutions) has gained considerable attention due to the potential in mimicking real-life solitary waves. As these types of waves are a very important part of wave propagation in different media, this attention is justified. In this work, we have considered a number of NLPDEs and nonlinear fractional partial differential equations (NLFPDEs) representing certain real-life problems. We have worked out their exact soliton solutions by employing certain mathematical techniques, such as the Generalized Kudryashov Method, Exponential Rational Function Method, Modified Exponential Rational Function Method, (?′ ?2 )-Expansion Method, Auxiliary Equation Method, Khater method, and Generalized Riccati equation mapping method, etc. We have applied these methods to obtain exact solitary wave solutions to a number of NLPDEs and NLFPDEs, such as, NLPDEs representing the van der Waals normal form for fluidized granular matter, the space-time fractional Klein-Gordon equation, space-time fractional Whitham-Broer-Kaup (WBK) equation, time fractional Hirota-Satsuma Coupled Korteweg-de Vries (HSC KdV) equation, (3+1)-dimensional time fractional KdVZakharov-Kuznetsov (KdV-ZK) equation, space-time fractional Boussinesq equation, space-time fractional (2+1)-dimensional breaking soliton equations, space-time fractional Symmetric Regularized Long Wave (SRLW) equation, time fractional (2+1)-dimensional nonlinear Zoomeron equation, space-time fractional Sharma-Tasso-Olver (STO) equation, time fractional Kaup-Kupershmidt (KK) equation, space-time fractional coupled Burgers equations, space-time fractional Zakharov Kuznetsov Benjamin-Bona-Mahony (ZKBBM) equation, ill-posed Boussinesq equation, Nonlinear Longitudinal Wave (NLW) equation, time fractional Sharma-Tasso-Olver (STO) equation and conformable Caudrey-DoddGibbon (CDG) equation. These introduce us to several types of solitary wave solutions like soliton, singular soliton, kink wave, periodic wave, singular kink wave, multiple-soliton wave, multiple periodic solutions, bell-shaped soliton solutions, bright-dark soliton, nontopological (bright) soliton solutions, topological (dark) soliton solutions, cusp-like singular soliton, hyperbolic, trigonometric, exponential and rational solutions. These methods include the use of certain transformations, which transform the given partial differential equation into an ordinary differential equation. For nonlinear fractional partial differential equations (NLFPDEs), an analogous reduction has been achieved by using fractional complex transformations. Besides these suitable transformations, many other strategies have also been used to get exact solutions to the NLPDEs or NLFPDEs at hand. These include using appropriate balancing principles and computer algebra systems such as MAPLE and MATHEMATICA. We have focused on finding methods which could give us such exact solutions which have not been reported yet. Or, even if they have been reported, we have tried to find a more general form of these solutions. To achieve that goal, besides using the already existing techniques, we have also modified the existing methods to hopefully find more general solutions. After the computation of these exact solutions, we have verified them by plugging them back into their respective differential equations. They are found to satisfy their respective differential equation exactly and their solitary wave behavior is captured with the help of graphical simulation.