مولانا محمد ثانی
[بھانجہ مولانا سید ابوالحسن علی الندوی]
ہمارے حبیب لبیب اورقرآن کے عبدمنیب مولانا سید ابوالحسن علی الندوی کو گزشتہ دوتین برس میں جوحوادث پیش آئے ایک ضعیف قلب انسانی کی قوت برداشت کاامتحان لینے کے لیے کچھ کم نہ تھے کہ اب گزشتہ فروری میں حقیقی بھانجے مولانا محمد ثانی کی بمرض سگ گزیدگی ۵۶برس کی عمر میں دردناک موت کاحادثہ فاجعہ پیش آگیا۔اناﷲ وانا الیہ راجعون۔
سچ کہا کسی نے جن کے رتبے ہیں سوااُن کو سوامشکل ہے، لیکن چونکہ مولانا کاگھرانہ’’ایں خانہ ہمہ آفتاب است‘‘ کامصداق ہے اس بناپر اس طرح کا حادثہ تنہا مولانا کانہیں بلکہ علم و ادب اور دین وشریعت کے عالم کا حادثہ ہوتاہے، چنانچہ اس مرتبہ بھی ایساہی ہوا، مرحوم ندوۃ العلماء اورمظاہرالعلوم سہارنپور دونوں درس گاہوں کے تعلیم یافتہ تھے۔ حدیث کادرس شیخ الحدیث حضرت مولانا محمدزکریا صاحب مدظلہ العالی سے لیا تھا اوران کے خلیفۂ مجاز بھی تھے۔ تصنیف وتالیف کا ذوق فطری تھا، سوانح نگاری کاخاص سلیقہ رکھتے تھے، چنانچہ مولانا سہارنپوری اور مولانا محمد یوسف کی ضخیم سوانح عمریاں لکھیں اورمقبول خاص وعام ہوئیں۔ مترجم بھی بہت اچھے اورشاعر شیوابیان بھی تھے۔ ’’ رضوان‘‘ کے نام سے خواتین کاایک ماہنامہ بھی ایڈٹ کرتے تھے۔عملاًواخلاقاً نہایت زاہد و عابد،بے غرض وبے لوث، خاموش مگر متواضع وخندہ جبین تھے۔ اﷲ تعالیٰ کروٹ کروٹ جنت نصیب کرے اورمولانا علی میاں اوردوسرے اہل خانہ کو صبرجمیل کی توفیق عطاہو۔آمین
[اپریل۱۹۸۲ء]
Introduction: Doctors committed to the care of patients are trying to fulfill their duty in a difficult situation, but the consequential impacts of COVID-19 outbreak on Junior Doctors mental health are far too complex. Objective: The objective of this study was to gain insight into Junior Doctors’levels of concerns during a global pandemic of COVID-19. Methods: A quantitative cross-sectional study, utilizing a 23-item validated questionnaire was conducted on two hundred and fifty doctors of various disciplines and nationalities working on training and non-training posts. Results: The response rate was (77 %) and the levels of concern score among Junior doctors during COVID-19 pandemic in the NHS was found to be (41.35±4.9). With regard to gender differences, 32.5% of males and 27.5% females had a moderate concern score of 40 to 47. In regard to safety at work (85%) agreed that they are not safe, (100%) agreed that they are at risk to contract a COVID-19 infection at work and (100%) felt that they will transmit COVID-19 to their families but (95%) agreed that were obliged to take care of patients. In addition, (97.5%) doctors were not confident with the current infection control measures and (77.5%) felt frustrated with poor infection control training offered to them. Conclusion: Therefore, measures to strengthen personal protection and adequate support to Junior Doctors should be addressed urgently by the Healthcare system. KEYWORDS: COVID-19, Doctors, PPE, Concerns, Psychological impact.
This thesis project focuses on the numerical solutions of selected nonlinear hyperbolic sys tems of partial differential equations (PDEs) describing incompressible and compressible flows. Such type of PDEs are used to simulate various flows in science and engineering. The underlying physics of such systems of PDEs is very complex and some mathematical and computational issues are associated with them. For instance, they may contain non conservative terms or may be weakly hyperbolic. The strong nonlinearity of the systems could generate sharp fronts in the solutions in a finite time interval, even for smooth initial data. Moreover, accurate discretization of the non-conservative terms is a challenge task for the numerical solution techniques. In the presence of non-conservative terms, well balancing, positivity preservation and capturing of steady states demand special attention during the application of a numerical algorithm. In this thesis project, we develop exact Riemann solvers for the one-dimensional Ripa model, containing shallow water equations that incorporate horizontal temperature gradients and considering both flat and non flat bottom topographies. Such Riemann solvers are helpful for understanding the behavior of solutions, as these solutions contain fundamental physical and mathematical characters of the set of conservation laws. Such solvers are also very helpful for evaluating performance of the numerical schemes for more complex models. Afterwards, third order well-balanced finite volume weighted essentially non-oscillatory (FV WENO) schemes are applied to solve the same model equations in one and two space dimensions and a Runge-Kutta discontin uous Galerkin (RKDG) finite element method is applied to solve this model in one space dimension. In the case of compressible fluid flow models, an upwind conservation element and solution element (CE/SE) method and third order finite volume WENO schemes are applied to solve the dusty gas and two-phase flow models. The suggested numerical schemes are able to tackle the above mentioned associated difficulties in a more efficient manner. The accuracy and order of convergence of the proposed numerical schemes are analyzed qualitatively and quantitatively. A number of numerical test problems are considered and results of the suggested numerical schemes are compared with the derived exact Riemann solutions, results available in the literature, and with the results of a high resolution central upwind (CUP) scheme.