Search or add a thesis

Advanced Search (Beta)
Home > نعمۃ الباری کا منہج و اسلوب: تحقیقی و تجزیاتی مطالعہ

نعمۃ الباری کا منہج و اسلوب: تحقیقی و تجزیاتی مطالعہ

Thesis Info

Author

شگفتہ جبیں

Supervisor

ہمایوں عباس شمس

Program

Mphil

Institute

Government College University Faisalabad

City

فیصل آباد

Degree Starting Year

2014

Language

Urdu

Keywords

مجموعہ صحاح ستہ , صحیح بخاری شروحات

Added

2023-02-16 17:15:59

Modified

2023-02-19 12:20:59

ARI ID

1676733633085

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

8 تلاشی کوٹ دی

تلاشی کوٹ دی

 

                چاچا اﷲ دتہ نے اپنے ہرے رنگ دے کوٹ دا اپر والا بٹن بند کردے آکھیا ’’انور پتر! شام نوں بازار توں پرتدے ہویاں میرے لئی دلیے دا اک ڈبہ تے لے آویں‘‘ ایہہ کہہ کے اوہناں دو پرانے دس دس والے نوٹ میرے ول وادھائے ’’چاچا! ایس دی کیہہ لوڑ اے؟ میں لے آواں گا‘‘ میں رسماً آکھیا۔

                ’’او نئیں پتر! میرے کول نہ ہوون تاں ہورگل اے‘‘ میں چاچے کولوں پیسے پھڑے تے بازار ٹرگیا، چاچا اﷲ دتہ ساڈے پنڈدے بزرگاں وچوں سن۔ ساڈے گھر توں اوہ تن گھر چھڈ اک کلی ورگے گھر وچ رہندے سن جس دا صرف اک ای کمرہ سی۔ بچے ہے نئیں سن تے گھر والی کدوں دی اﷲ کول ٹرگئی ہوئی سی۔ عمر وچ اوہ سٹھ دے لگ بھگ ہوون گے۔ جدوں وی اوہناں نوں کوئی بازار دا کم ہوندا تاں اوہ کسے وی بازار جارہے ہوندے بندے نوں آکھ دیندے۔ ہر بندہ ہس کے اوہناں دا کم کردا سی۔ اج مینوں بازار جاندے ویکھ کے اوہناں مینوں اپنے کم دا آکھ دتا۔ میں شامیں دلیا اوہناں نوں لیا کے دے دتا۔ چاچا اﷲ دتہ نوں سارے پنڈ والے وڈے چھوٹے چاچا ای آکھدے سن۔ اوہناں دی شخصیت بہت گنبھل دار سی تے اوہناں دا ہرے رنگ دا کوٹ جس نوں اوہ ہر ویلے پائی رکھدے اوہناں دی شخصیت نوں ہور گھنجل دار بنا دیندا سی۔ کوٹ اتے دو چوڑیاں لکیراں سن گرمی ہووے بھانویں سردی کوٹ ہر ویلے اوہناں دے جثے اتے رہندا۔ مینوں یاد نئیں کہ میں کدے اوہناں نوں بغیر کوٹ دے ویکھیا ہووے۔ چاچا نوں کئی لوک مذاق وچ کہہ دیندے سن ’’بھئی ایس کوٹ اند رکیہڑا خزانہ اے جو ایس نوں ہر ویلے پائی پھر دا ایں‘‘...

تفسیر القرآن از سر سید احمد خان کا تحقیقی و تنقیدی جائزہ

Sir Syed Aḥmed Khān belonged to a famous family of the subcontinent during the late Mughal and early British colonial period. He was famous for his close relations with the colonial government. He served many years in the judiciary. In recognition of his services, he was conferred upon with various titles such as Sir, The Imperial Advisor, etc. He is the founder of the educational campaign which was later known as the Aligarh movement. He was worried about the future of Muslims in India. This worry forced him to produce various literary and Islamic books to uplift the political, cultural, educational and social status of the Indian Muslims. One of his famous contribution to Islamic literature of Quranic exegeses is his Tafsīr al-Qur’ān. His tafsīr is influenced by western thoughts. He, instead of following the traditional methodology of Quranic exegeses, tried to understand the Quranic verses rationally. This led him to deviate from many established concepts of Islamic doctrines. He went against the Muslims’ affirmed beliefs in his exegesis. He mistrusted some of the basics of Islamic thoughts and tried his best to make new parameters of writing & reading of the Quranic exegesis on human logics. In addition, some of his views show certain relevance to the Mu'tazilites school of thought. The aim of this paper is to present an analytical and a critical evaluation of the exegetical opinions of Sir Syed Aḥmed Khān, particularly on the issues where he deviated from the mainstream Islamic thoughts in his exegesis, Tafsīr al-Qur’ān.

Spectral Feature Extraction With Adaptive Mel Filter Bank for Speech Recognition

Speech Recognition is an active area under research from the last few decades. A number of sophisticated methods have been developed in recent years for improving recognition rate. A speech recognition system consists of two main components, i.e., frontend and back-end. In this thesis, we have introduced new methods to front-end which achieve higher recognition rate. For the front-end, we propose novel spectral features for speech recognition. More specifically this thesis replaces the traditional state of the art feature extraction technique i.e., mel frequency cepstral coefficients (MFCC) with adaptive mel filter bank, which is cognitively-inspired feature extraction approach that constitutes adaptive filter bank after sensing the spectrum of input signal. This work has not only improved the performance of automatic speech recognition system (ASR) but also contributed in three main directions of the ASR field. The first facet is related to improve the spectrogram visualization using adaptive window size selection. Short-time Fourier transform (STFT) is a well known technique, which is used for time-frequency analysis of non-stationary signal. Selection of an appropriate window size become a difficult task when no background information about the input signal is known. A novel empirical model is proposed in this work, which selects the window size adaptively for a narrow band signal using spectrum sensing technique. As fixed model is undesirable for a wide band signals, the proposed model adapts constant-Q transform (CQT). Unlike STFT, CQT provides a varying time frequency resolution. The proposed model not only improves the results of spectrogram visualization but also reduces the computational cost. Proposed model achieves 87.71% of the appropriate window length selection. The proposed model is not only useful in feature extraction from speech signal but it is also equally useful in biomedical signals, music signals and radio signals etc. The second facet relates commercial application of speech recognition. This thesis presents a novel idea that automatically identifies the hearing impairment based on a cognitively inspired feature extraction and speech recognition approach. To the best of authors’ knowledge, this is first attempt to automate pure tone and speech audiometry testing based on speech recognition. The proposed method uses an adaptive filter bank with weighted mel frequency cepstral coefficients for feature extraction. Classification is performed using well known statistical pattern technique i.e., hidden Markov model (HMM). The performance evaluation and comparison with the ground truth (expert audiologist results) and current state of the art techniques have revealed that the proposed method can achieve comparable results automatically. Specifically the overall absolute error of the proposed model when compared with expert audiologist result is less than 4.9 dB and 4.4 dB for pure tone and speech audiometry, respectively. The overall accuracy achieved by the proposed method is 96.67%. The third facet is related to the implementation of proposed feature extraction model for dialect recognition of low resource local language. Traditional methods for dialects recognition such as MFCC and discrete wavelet transform (DWT) work well for high resource languages but the accuracy is not that good for low resource languages. This thesis presents a new approach for Pashto dialects recognition using an adaptive filter bank with MFCC and DWT. This novel approach extracts features using adaptive filter bank in MFCC and DWT followed by classification using statistical pattern matching (HMM) and machine learning techniques K-nearest neighbors (KNN) and support vector machine (SVM) classifiers. Three different models proposed are tested and compared with state of the art techniques. The proposed method achieved an overall accuracy of 88%.