رئیس احمد جعفری
پچھلے دنوں پاکستان میں ہمارے ایک اورفاضل اورعزیز دوست رئیس احمد جعفری کابھی انتقال ہوگیا۔مرحوم نے تعلیم ندوہ اورجامعہ دونوں میں پائی تھی لیکن تکمیل کسی ایک جگہ بھی نہیں کی۔تحریر کاشوق اور سلیقہ شروع سے تھا اورآدمی تھے بڑے ذہین اور طباع! اس لیے اپنے مطالعہ اورمحنت کے بل بوتہ پر اردوزبان کے نامور ادیب اورمصنف بن گئے۔ ان کاقلم ہی ان کے لیے ذریعہ معاش تھا، اس لیے اگرچہ کوئی ڈھنگ کاعلمی اورتحقیقی کام نہیں کرسکے لیکن افسانہ وناول سے لے کرمذہب اورتاریخ وفلسفہ تک ہر موضوع پر چھوٹی بڑی کتابیں اس کثرت سے لکھی ہیں کہ اس وصف خاص میں ان کاکوئی معاصر ہمسری کادعویٰ نہیں کرسکتا۔ان کاقلم بڑاشگفتہ اوررواں دواں تھا ان کے ساتھ میراذاتی تعلق یہ تھا کہ مرحوم کے نانا سید امتیاز احمد صاحب (ریاض خیرآبادی مرحوم کے حقیقی بھائی) آگرہ میں کوتوال شہرتھے۔ان میں اور میرے والدصاحب قبلہ میں نہایت گہرے برادرانہ تعلقات تھے ۔کوتوال صاحب کے متعلقین ہمارے ہاں آتے اور ہفتوں قیام کرتے تھے ۔ اسی طرح ہم لوگ ان کے ہاں جاتے اور ہفتہ دو ہفتہ ٹھہرتے تھے۔رئیس احمد جعفری کوتوال صاحب (جن کومیں خالو کہتا تھا)کی پہلی بیوی کی لڑکی کے بطن سے تھے۔ان تعلقات کے باعث مرحوم جب تک دہلی میں رہے برابر آتے جاتے رہے ۔جب کبھی ملتے تھے بڑی محبت سے پیش آتے تھے۔ آخری مرتبہ دہلی آئے اور میں ان دنوں ہندوستان سے باہر تھاتولاہور جاتے ہوئے دفتر برہان میں میرے نام ایک خط چھوڑ گئے جس میں لکھا تھا بڑی حسرتوں اور تمناؤں کے ساتھ آیاتھا کہ تم سے ملاقات ہوگی مگر مایوس جارہاہوں۔اب میں بیمار رہنے لگاہوں ، نہ جانے کتنی اور باقی ہے۔البتہ یہ تمنا ضرور ہے کہ مرنے سے پہلے ایک مرتبہ تمہیں اور دیکھ لوں۔‘‘ صدحیف تمنا پوری نہیں ہوئی،اور وہ خدا کو پیارے...
This article focuses on the various aspects of Khushal's mystical poetry. Khushal was well-read and had a lot of scholarly exposure. He also spent time in the company of great scholars. All these factors contributed to his mystical poetry. I. According to him the servant of God knows himself. In other words those people know themselves who know Allah. Ii This world becomes a mirage for those who believes in Allah and the world seems a useless place to them. Iii. There is a universe in the heart of a “darwesh”. Iv. There are two types of mind; one is worldly and the other is spiritual. They both consider each other as the same. V. True love does not depend on wisdom but it depends on the passion of the individuals. In short, Khushal khan khattak has expressed great mystical thoughts in his poetry for the benefits of all and sundry, and invites them to think about their near future and see what is happening around them and what will be the answer of that questions which would be asked on the day of resurrection.
Inequalities lie at the heart of a great deal of mathematics. G. H. Hardy reported Harald Bohr as saying ‘all analysts spend half their time hunting through the literature for inequalities which they want to use but cannot prove’. Inequalities involving means open many doors for analysts e.g generalization of mixed means fallouts the refinements to the important inequalities of Holder and Minkowski. The well known Jensen’s inequality asserts a remarkable relation among the mean and the mean of function values and any improvement or refinements of Jensen’s inequality is a source to enrichment of monotone property of mixed means. our aim is to utilize all known refinements of Jensen’s inequality to give the re- finements of inequality among the power means by newly defined mixed symmetric means. In this context, our results not only ensures the generalization of classical but also speak about the most recent notions (e.g n-exponential convexity) of this era. In first chapter we start with few basic notions about means and convex functions. Then the classical Jensen’s inequality and the historical results about refinements of Jensen’s inequality are given from the literature together with their applications to the mixed symmetric means. In second chapter we consider recent refinements of Jensen’s inequality to refine inequality between power means by mixed symmetric means with positive weights under more comprehensive settings of index set. A new refinement of the classical Jensen’s inequality is also established. The Popovicui type inequality is generalized using green function. Using these refinements we define various versions of linear functionals that are positive on convex functions. This step ultimately leads us to viiviii the important and recently revitalized area of exponential convexity. Mean value theorems are proved for these functionals. Some non-trivial examples of exponential convexity and some classes of Cauchy means are given. These examples are further used to show monotonicity in defining parameters of constructed Cauchy means. In third chapter we develop the refinements of discrete Jensen’s inequality for con- vex functions of several variables which causes the generalizations of Beck’s results. The consequences of Beck’s results are given in more general settings. We also gen- eralize the inequalities of H ̈older and Minkowski by using the Quasiarithmetic mean function. In forth chapter we investigate the class of self-adjoint operators defined on a Hilbert space, whose spectra are contained in an interval. We extend several re- finements of the discrete Jensen’s inequality for convex functions to operator convex functions. The mixed symmetric operator means are defined for a subclass of positive self-adjoint operators to give the refinements of inequality between power means of strictly positive operators. In last chapter, some new refinements are given for Jensen’s type inequalities in- volving the determinants of positive definite matrices. Bellman-Bergstrom-Fan func- tionals are considered. These functionals are not only concave, but superlinear which is a stronger condition. The results take advantage of this property.