Home
Add
Get on Google Play
Home
> Edit
Add/Update Thesis
Title*
Author's Name*
Supervisor's Name
Abstract
Volumetric increase in data along with the curse of dimensionality has diverted the recent trends of computer science. Processing such a massive amount of data is a computationally expensive job. Feature selection is the process of selecting subset of data from the entire dataset that contains most of the information. The selected subset is called Reduct. Feature selection has materialized the idea of jumbling with attributes. Subset of attributes is favored which bounces the same information as the wide-ranging set of variables. Various dynamic reduct finding algorithms have been proposed. Dynamic reducts is an extension to the idea of reduct extraction based on rough set. Sub-tables are randomly drawn from the original decision table and reducts are extracted from these sub-tables. These reducts are considered to be the stable reducts for complete dataset. However, all the existing dynamic reduct finding algorithms are computationally too expensive to be used for datasets beyond smaller size. In this research, a novel dynamic reduct finding technique based on rough set theory is proposed, where dynamic reducts and relative dependency are the two key notions. Reducts are selected, optimized and further generalized through strenuous Parallel Feature Sampling (PFS) algorithm. In-depth analysis is performed using various benchmark datasets to justify the proposed approach. Results have shown that the proposed algorithm outperforms the existing state of the art approaches in terms of both efficiency and effectiveness.
Subject/Specialization
Language
Program
Faculty/Department's Name
Institute Name
Univeristy Type
Public
Private
Campus (if any)
Institute Affiliation Inforamtion (if any)
City where institute is located
Province
Country
Degree Starting Year
Degree Completion Year
Year of Viva Voce Exam
Thesis Completion Year
Thesis Status
Completed
Incomplete
Number of Pages
Urdu Keywords
English Keywords
Link
Select Category
Religious Studies
Social Sciences & Humanities
Science
Technology
Any other inforamtion you want to share such as Table of Contents, Conclusion.
Your email address*