Home
Add
Get on Google Play
Home
> Edit
Add/Update Thesis
Title*
Author's Name*
Supervisor's Name
Abstract
The continuous weak subsolutions of general type second order linear partial dif- ferential equations are studied in the present thesis. Based on monotonic approximation techniques developed by Walter Littman (1963) we prove that under some regularity conditions on the coefficients of the uniformly elliptic differential operator any bounded continuous weak subsolution in a smooth domain D possesses all first order weak (Sobolev) partial derivatives and belongs to the weighted Sobolev space H 1 (D; h), where h(x) is the appropriate weight function. Moreover, we establish a new type weighted reverse Poincare inequality for the dif- ference of two bounded and continuous weak subsolutions. Further the latter inequality is applied to the approximation problem of the gradient of the analytically unknown value function of the optimal stochastic control prob- lem, the value function being the unique solution of the Hamilton-Jacobi-Bellman equation.
Subject/Specialization
Language
Program
Faculty/Department's Name
Institute Name
Univeristy Type
Public
Private
Campus (if any)
Institute Affiliation Inforamtion (if any)
City where institute is located
Province
Country
Degree Starting Year
Degree Completion Year
Year of Viva Voce Exam
Thesis Completion Year
Thesis Status
Completed
Incomplete
Number of Pages
Urdu Keywords
English Keywords
Link
Select Category
Religious Studies
Social Sciences & Humanities
Science
Technology
Any other inforamtion you want to share such as Table of Contents, Conclusion.
Your email address*