Home
Add
Get on Google Play
Home
> Edit
Add/Update Thesis
Title*
Author's Name*
Supervisor's Name
Abstract
In this thesis we give a structure theorem for Cohen-Macaulay monomial ideals of codimension 2, and describe all possible relation matrices of such ideals. We also study the set T (I) of all relation trees of a Cohen–Macaulay monomial ideal of codimension 2. We show that T (I) is the set of bases of a matroid. In case that the ideal has a linear resolution, the relation matrices can be identified with the spanning trees of a connected chordal graph with the property that each distinct pair of maximal cliques of the graph has at most one vertex in common. We give the equivalent conditions for a squarefree monomial ideal to be a com- plete intersection. Then we study the set of Cohen–Macaulay monomial ideals with a given radical. Among this set of ideals are the so-called Cohen–Macaulay modifica- tions. Not all Cohen–Macaulay squarefree monomial ideals admit nontrivial Cohen– Macaulay modifications. It is shown that if there exists one such modification, then there exist indeed infinitely many. We also present classes of Cohen–Macaulay squarefree monomial ideals with infinitely many nontrivial Cohen–Macaulay modi- fications.
Subject/Specialization
Language
Program
Faculty/Department's Name
Institute Name
Univeristy Type
Public
Private
Campus (if any)
Institute Affiliation Inforamtion (if any)
City where institute is located
Province
Country
Degree Starting Year
Degree Completion Year
Year of Viva Voce Exam
Thesis Completion Year
Thesis Status
Completed
Incomplete
Number of Pages
Urdu Keywords
English Keywords
Link
Select Category
Religious Studies
Social Sciences & Humanities
Science
Technology
Any other inforamtion you want to share such as Table of Contents, Conclusion.
Your email address*