Home
Add
Get on Google Play
Home
> Edit
Add/Update Thesis
Title*
Author's Name*
Supervisor's Name
Abstract
Uniformly Convex and Bazilevic Functions This work is in the field of Geometric Function Theory in which we study geometric properties of analytic functions. It was originated around the turn of 20th century and has many applications in the field of applied sciences such as engineering, physics, electronics, medicines. In this dissertation, we define and discuss some new subclasses of normalized analytic functions by using some integral operators such as the operator Q a given by Q a f(z) z a ( )za 1 ta 0 2 log z t 1 f (t)dt, where G denotes gamma function, f(z) is analytic in open unit disc, a>0 and 0. We also study generalized Bazilevič functions. The functions in these classes generalize the idea of Bazilevič functions, k-uniformly convexity and bounded boundary and bounded radius rotations. The subordination and convolution tools are used to investigate the geometric properties of the functions in these classes and several inclusion results with some interesting consequences have been proved. We have investigated the univalency condition and coefficient bounds, arc length problem, integral preserving properties and rate of growth of Hankel determinant for these functions. The most of our results are sharp and they have been connected with previously known results.
Subject/Specialization
Language
Program
Faculty/Department's Name
Institute Name
Univeristy Type
Public
Private
Campus (if any)
Institute Affiliation Inforamtion (if any)
City where institute is located
Province
Country
Degree Starting Year
Degree Completion Year
Year of Viva Voce Exam
Thesis Completion Year
Thesis Status
Completed
Incomplete
Number of Pages
Urdu Keywords
English Keywords
Link
Select Category
Religious Studies
Social Sciences & Humanities
Science
Technology
Any other inforamtion you want to share such as Table of Contents, Conclusion.
Your email address*