Search or add a thesis

Advanced Search (Beta)
Home > Crack detection on roads

Crack detection on roads

Thesis Info

Author

Kazim Raza Rizvi, Ambreen Aslam

Program

BS

Institute

Habib university

Institute Type

Private

City

Karachi

Province

Sindh

Country

Pakistan

Thesis Completing Year

2018

Thesis Completion Status

Completed

Subject

Software Engineering

Language

English

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676724375482

Asian Research Index Whatsapp Chanel
Asian Research Index Whatsapp Chanel

Join our Whatsapp Channel to get regular updates.

Similar


Cracks in roads is a major problem that affect the quality of the roads. Roads tend to crack with the passage of time as well as due to natural disasters such as earthquakes. Current techniques rely mainlyon visual inspection which drains away precious resources.The solution introduced here will automatically acquire images of roads which will then be processed and locations with cracks will be identified using image processing.The process is two staged: first an automated rover, that can be operated remotely, will run on the road and collect images of the whole street. These images, which will be saved in an SD card, will be transferred to a PC and the convolutional neural network based crack detection system can identify the ones that have a crack. Through the GPS coordinates obtained by the rover, areas of the cracked roads will be identified. The user of this product can then use this information to take further action.The product gives results that are 90.4% accurate. The rover is easy to control and does not require a highly skilled technician. The software can run on most PCs and does not require very high computation power
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ہو ملاقات جو اپنوں سے یا اغیار کے ساتھ

ہو ملاقات جو اپنوں سے یا اغیار کے ساتھ
کتنا اچھا ہو اگر سب سے ملیں پیار کے ساتھ

تو نے منصور بڑی دار کو عزت بخشی
ذکر ہوتا ہے تو ہوتا ہے ترا دار کے ساتھ

میں تو بس دُور ہی رہتا ہوں ہمیشہ ان سے
میری بنتی جو نہیں زر سے نہ زردار کے ساتھ

آسرا حشر میں آقا کی شفاعت ہو گی
کون واں ہو گا بھلا مجھ سے خطاکار کے ساتھ

مجھ کو منظور فقط تیری رفاقت جو ملے
نہ رہے کوئی تعلق مرا سنسار کے ساتھ

ساتھ تیرے بھی وہی ہو گا یقینا تائبؔ
جو کہ ہوتا ہے یہاں ایک وفادار کے ساتھ

موقف محمود سامي البارودي ومحمد إقبال من السياسة: دراسة تحليلية وموازنة

It is obvious to everyone who has associated with Arabic and Urdu literature that both Mahmood Sami al Baroodi and Allma Muhammad Iqbal are the shining stars in the orbit of Arabic and Urdu literature, because each of them made the world busy by his literature, and tied to blow the spirit of innovation in the style of poetry and made free it from affectation and returned it to sincerity and integrity of expression, and each of them  developed his political and cultural thought by traveling to Europe. In this article we have tried to highlight the political and literary life of Iqbal and al Barood, we also tried to analyze their efforts in the field of literature and their stand on the politics

Kinetic Study and Reactor Simulation of Methycyclohexane Dehydrogenation Reaction for a Mobile Power Plant

Fossil fuels are a major contributor to the today’s world energy demand as well as greenhouse gases causing global warming. The idea to reduce the dependence on fossil fuels for a green future needs a stepwise transition from fossil fuels to renewable sources. Among the various renewable sources hydrogen is probably the most promising alternative due to its availability, high heating value per unit weight, and zero emissions. The only challenge associated with hydrogen is its safe and feasible storage. The methylcyclohexane-toluene-hydrogen (MTH) system is the one that is considered safe and economical option for hydrogen production, storage and transportation, and utilization. The dehydrogenation reaction of the MTH system is highly endothermic and requires considerable amount of heat energy at a fast rate to have high equilibrium conversions. The successful utilization of hydrogen economy based on the MTH system therefore requires a highly active, selective, and stable dehydrogenation catalyst with its associated reaction kinetics. An intensified dehydrogenation reactor design that supplies high rates of heat transfer to the catalyst bed is also desired. A comprehensive review of the literature regarding kinetics of the methylcyclohexane (MCH) dehydrogenation over Pt containing catalysts has revealed that there is no consensus among the researchers on describing the reaction mechanism, rate-determining step, and inhibition offered by a product. Different researchers have suggested different reaction chemistry and developed different kinetic rate equation. There is hardly a study on the design and simulation of an intensified dehydrogenation reactor that is capable of being used on commercial scale applications. In the present study, an attempt is made to address the discrepancies in the kinetics of the MCH dehydrogenation that exist in the literature. The experimental data of 5 different Pt containing catalysts over a wide range of operating conditions is used to conduct a detailed kinetic study of the dehydrogenation reaction. Various kinetic models are developed based on the power law, Langmuir-Hinshelwood-Hougen-Watson (LHHW), and Horiuti-Polanyi reaction mechanism. The developed kinetic model equations are analyzed both kinetically and statistically and the best fitted kinetic model for each of the catalysts is worked out. The kinetic model based on single-site LHHW kinetics where loss of first hydrogen is the rate limiting step is found appropriate in representing the data of all the catalysts. This leads to report a unified kinetic model for the methylcyclohexane dehydrogenation reaction over any Pt containing catalyst. In addition to that, a new reaction mechanism called associative adsorption of methylcyclohexane is proposed and a kinetic model equation developed based on this mechanism is found successful in representing the relevant experimental data. A 2.0 MW power plant, working on the methylcyclohexane dehydrogenation reaction to yield hydrogen gas as fuel for the power production, is proposed and simulated in Aspen Hysys. The operating conditions such as stream flowrates, temperatures, pressures, and thermal efficiency are worked out. It is found that 17.4148 kmol/h methylcyclohexane are required to produce 2.0 MW net power output. Also, it is found that there is enough energy in the exhaust gases of the turbine that can carry out the dehydrogenation reaction. Using the best-fit kinetic model and the simulation data obtained for 2.0 MW power plant, a novel reactor-heat exchanger design is mathematically modeled and simulated. The proposed reactor configuration is found highly appropriate in carrying out the dehydrogenation reaction.