Search or add a thesis

Advanced Search (Beta)
Home > Clinicla and Molecular Characterization of Human Hereditary Skin Disorders in Consanguineous Families

Clinicla and Molecular Characterization of Human Hereditary Skin Disorders in Consanguineous Families

Thesis Info

Access Option

External Link

Author

Raja Hussain Ali

Program

PhD

Institute

Quaid-I-Azam University

City

Islamabad

Province

Islamabad.

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Subject

Biochemistry

Language

English

Link

http://prr.hec.gov.pk/jspui/bitstream/123456789/9899/1/Raja_Hussain_Ali_Biochemistry_2016_QAU_Main%20part.pdf

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676725734649

Asian Research Index Whatsapp Chanel
Asian Research Index Whatsapp Chanel

Join our Whatsapp Channel to get regular updates.

Similar


A study, presented in the dissertation, described clinical and genetic characterization of nineteen consanguineous families (A-S) featuring various forms of inherited skin disorders. Fifteen of these families (A-I, K-P) showed various forms of isolated skin anomalies, while the remaining four families (J, Q-S) exhibited distinct forms of syndromic conditions. Isolated X-linked ichthyosis (XLI) was identified in four families (A-D). Initial marker analysis revealed two distinct interstitial deletions at chromosome Xp22.3. SNP array fine mapped the underlying deletions to ~ 1.67 Mb (family A, B, C) and ~ 1.62 Mb (family D). Different forms of isolated scaling skin phenotype, with autosomal recessive inheritance, was identified in five consanguineous families (E-I). Genotyping using microsatellite markers and haplotype analysis established linkage in the family E, segregating ichthyosis vulgaris, to a previously known gene FLG at chromosome 1q21.3. Subsequently, Sanger sequencing identified a novel homozygous nonsense variant (c.10459A>T; p.Arg3487*) in the third exon of the FLG gene in affected individuals. In family F, with ichthyosiform erythroderma, genetic delineation by exome sequencing revealed a previously reported nonsense variant (c.1630C>T; p.Gln544*) in the ALOXE3 gene. In the third family, segregating scaling phenotype, SNP genotyping and exome sequencing identified a novel gene CLUH carrying a homozygous missense variant (c.2852G>A; p.Arg951His) in affected members. Two other families (H and I), segregating autosomal recessive form of ichthyosis, failed to show linkage to the known genes. Abstract Clinical and Molecular Characterization of Human Hereditary Skin Disorders in Consanguineous Families XXVIII Pure hair and nail ectodermal dysplasia, with autosomal recessive transmission, was observed in an inbred family J. Genotyping established linkage in the family at chromosome 12p11.1-q21.1. Sanger sequencing identified a novel homozygous nonsense variant (c.404C>A; p.Ser135*) in the HOXC13 gene. Clinically various forms of isolated hypotrichosis was observed in six consanguineous families (K-P). Sequencing of a panel of genes failed to reveal potential pathogenic variants in two families (K, L), segregating autosomal dominant form of hair loss disorders. Direct sequencing of the gene LPAR6 in the family M identified a previously defined missense variant (c.562A>T; P.Ile188Phe) causing hypotrichosis with wooly hair. The in-silico studies of mutated LPAR6 protein verified aberrant receptor activity and downstream phospholipid signaling resulting in hair disorder, with curly phenotype. The conventional homozygosity mapping using microsatellites failed to identify linkage to known genes/loci in two other families (N, O). Exome sequencing in the family P wasn’t successful in identifying a homozygous pathogenic sequence variant causing hair loss. The study, described in the dissertation, elaborated genetic characterization of three consanguineous families segregating syndromic forms of hair loss disorders. In the family Q, with hypotrichosis and Juvenile Macular Dystrophy, haplotype analysis established linkage to gene CDH3 on chromosome 16q. Sequence analysis identified a novel homozygous in-frame deletion variant (c.764_766delACT; p.255delTyr) in the CDH3 gene. In family R and S clinical investigation found the condition Woodhouse Sakati syndrome (WSS) and Nonphotosensitive trichothiodystrophy (TTDN), respectively. Exome sequencing identified a novel truncating homozygous variant Abstract Clinical and Molecular Characterization of Human Hereditary Skin Disorders in Consanguineous Families XXIX (c.270delA; p.Lys90Asnfs8*) in the gene DCAF17 and splice site variant c.339+1G>A in the gene MPLKIP in the family S. Structural investigation of mutated CDH3 p.255delTyr and DCAF17 p.Lys90Asnfs8* predicted atypical interactions with associated proteins. cDNA analysis of mutated MPLKIP c.339+1G>A verified unusual splicing event resulting in intron retention and setting up syndromic attributes in the family S.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

غزلیات

ستم یہ مجھ پہ زمانے نے بار بار کیا
اسی نے لوٹ لیا جس پہ اعتبار کیا

تمام عمر نبھانے کا توڑ کر پیماں
لباسِ ہستی مرا اس نے تار تار کیا

جو آنے والا نہ آیا تو یوں ہوا تائبؔ
تمام عمر اسی کا ہی انتظار کیا

المحكم والمتشابه وموقف المفسر منهما

The Mohkam and Mutashabeh is a renowned terminology of the Quranic Sciences and commentators of the Holy Quran described it in details, according to root words of Mohkam, it means Stopping and perfecting the things, this basic meaning can be seen in all the types and variations of this word. On the other hand we have the word Mutashabeh which root meaning is complication and unclearness. If we discuss both of the words as a terminology of the Quranic sciences, we can define Mohkam as “one which define itself without any other thing” or “one which has no need to be defined by something else” and Mutashabeh is “one which can’t define itself and need to be explained by someone else”. We will move on to discuss both terms in Holy Quran as a terminology to describe its multiple variations in the Holy Quran, its types and further we will discuss that why the Holy Quran contains both terms, in other words, we can say which are the logics and reasons of including Mutashabeh verses in the Holy Quran. In addition, we will mention the point of views of various renowned commentators and fields experts which give us a clear and sound concept about both of the terms.

Syntheses of Pyridine and Pyrimidine Derivatives in Search of Potential Therapeutic Agents

This research work consists of the syntheses of pyridine and pyrimidine derivatives by adopting various synthetic chemical transformations and screening of their biological activities. All compounds were fully characterized by various spectroscopic techniques such as 1H-NMR, 13C-NMR, EI-MS and HREI-MS. Melting points of all compounds were also recorded. This dissertation consists of two chapters based on the extensive literature and research findings regarding the three libraries of synthetic compounds. Each chapter has its own compounds numbering, tables, figures, schemes and references. Chapter-1 has been subdivided into two parts (part A and B). Part A composed of the broad literature survey regarding the general introduction of pyridine, its biological background and various synthetic protocols. In addition, it also deals with the rationale behind the current study. Fifty-seven synthesized derivatives of pyridine (21-77) were evaluated for their in vitro activities. all derivatives showed more potent inhibition against α-glucosidase in vitro, however, compounds 29, 35, 43, 44, 49, 56, 61, 70, and 75 showed more than hundred-fold better activity than standard acarbose (IC50 = 856.45 ± 5.60 μM). Out of fifty-seven derivatives, only four compounds 28, 30, 42, and 43 showed weak in vitro dipeptidyl peptidase inhibitory activity as compared to standard sitagliptin (IC50 = 0.0246 ± 0.004 µM). Remaining compounds were found to be completely inactive. Compound 38 showed potent antileishmanial activity while compound 22, 39, 40, 41, 46, 49, 55, and 67 showed weak to significant antileishmanial activities when compared with the standards amphotericin B (IC50 = 0.29 ± 0.05 µM) and pentamidine (IC50 = 5.09 ± 0.04 µM). Ten analogs 22, 25, 35, 38, 42, 46, 49, 63, 70, and 75 manifested themselves to be more potent while ten anlogs 31, 33, 36, 37, 39, 41, 45, 57, 73, and 74 showed weak to moderate activity in comparison with standard ibuprofen (IC50 = 11.2 ± 1.9 µM). Four analogs 25, 28, 35, and 49 were attributed to be significantly active while 43 showed moderate activity in comparison with standard rutin. Only compound 64 was observed to be the most potent against tyrosinase enzyme while, derivative 21, 38, and 50 showed moderate to weak tyrosinase inhibitory activity. In Part-B further pyridine derivatives 78-118 were synthesized and screened to check their in vitro biological activities. In vitro β-glucuronidase inhibition of all synthetic derivatives 78-118 were checked which showed that out of forty-one derivatives, twentyeight derivatives were showed more potency as compared to the standard D-saccharic acid 1,4-lactone (IC50 = 48.40 ± 0.25 μM). Among which compound 103 (IC50 = 1.10 ± 0.10 μM) was the most potent compound while compounds 102, 89, 116, 96, 110, and 111 were also the potent about ten to twenty fold better than standard. These derivatives were also evaluated for their urease inhibitory activity. Compound 78, 88, 92, 106, and 116 showed good to moderate potential against urease as compared with the standard thiourea, while remaining derivatives were found to be non-active. Ten Compounds 78, 80, 87, 90, 96, 97, 104, 106, 111, and 115 were showed more antiinflammatory potency than the standard ibuprofen. Out of 98 synthesized derivatives of pyridine, 29 compounds 25, 28, 31, 34, 43, 45, 48, 49, 55, 57, 58, 60, 61, 69, 71, 72, 74, 75, 83, 89, 97, 98, 102, 103, 109, 110, 111, 112, and 116 were new compounds. Chapter 2 describes introduction of pyrimidine, its biological background and various synthetic protocols. In addition, it also deals with the rationale behind the current study. One pot three-component synthesis was adopted to synthesized Dihydropyrimidone derivatives (150-189) and screened for in vitro biological evaluation. Forty synthetic derivatives of dihydropyrimidones were screened for antiinflammatory activity. Six derivatives 151, 157, 160, 162, 166, and 182 were found to be active and showed more significant to less significant activity in the comparison of standard ibuprofen. All of these derivatives were found to be inactive in intiglycation assay and against tyrosinase enzyme. All derivatives were also screened for their in vitro β-glucuronidase inhibitory activity. Among forty analogs, eighteen compounds 157-159, 162-166, 171-178, 181, and 182 were possess more inhibitory potential than the standard D-saccharic acid 1,4lactone (IC50 = 48.4 ± 1.25 μM). In DPPH activity, only one compound 162 is active which is two-fold more potent than the standards BHT (IC50 = 128.2 ± 0.5 µM) and remaining compounds were found to be inactive.